Skip to main content

ATPase-ATP Synthase and Mitochondrial Pathology

  • Chapter
  • 143 Accesses

Abstract

ATP, the main energy source of biological systems is mainly synthesized during oxidative phosphorylations: electron transfer along the respiratory chain located in the mitochondrial inner membrane is coupled to ATP synthesis from ADP and inorganic phosphate. The enzyme responsible for this synthesis is the ATPase-ATP synthase, FO-Fl or complex V (EC 3.6.1.34), identified in 1960 by Racker et al. To explain the coupling between electron transfer and ATP synthesis, Mitchell proposed the chemiosmotic theory in 1961, according to which an electrochemical proton gradient, established during electron transfer across the inner mitochondrial membrane represents the proton-motive force used by FO-Fl to synthesize ATP (review, Mitchell 1979). Over the last 20 years, the F0-Fl structure has been partly resolved by sequencing its subunits or their genes and by analysis of the 3-D structure of Fl (Abrahams et al. 1994; review, Pedersen et al. 1994, 1996). Many biochemical studies made on the native enzyme, or after chemical or genetic modification of the enzyme, have served as a basis to elucidate the mechanisms explaining how proton transfer across F0 could induce conformational changes inside Fl that would induce ATP synthesis (reviews, Boyer 1997; Junge et al. 1997). The final understanding of the molecular mechanism of this coupling will probably await the resolution of the F0 structure.

Due to space limitation, the authors apologize for not being able to cite all the articles where the original work was described. More often than not, the references are limited to reviews where the reader can find the original citations

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams JP, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of Fl-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  PubMed  CAS  Google Scholar 

  • Abrahams JP, Buchanan SK, Van Raaij MJ, Fearnley IM, Leslie AGW, Walker JE (1996) The structure of bovine Fl-ATPase complexed with the peptide antibiotic efrapeptin. Proc Natl Acad Sci USA 93:9420–9424

    Article  PubMed  CAS  Google Scholar 

  • Akiyama S, Endo H, Inohara N, Ohta S, Kagawa Y (1994) Gene structure and cell type-specific expression of the human ATP synthase a subunit. Biochim Biophys Acta 1219:129–140

    PubMed  CAS  Google Scholar 

  • Andersson U, Houstek J, Cannon B (1997) ATP synthase subunit c expression: physiological regulation of the PI and P2 genes. Biochem J 323:379–385

    PubMed  CAS  Google Scholar 

  • Belogrudov GI, Tomich JM, Hatefi Y (1996) Membrane topography and near-neighbor relationships of the mitochondrial ATP synthase subunits e, f, and g. J Biol Chem 271:20340–20345

    Article  PubMed  CAS  Google Scholar 

  • Boyer PD (1997) The ATP synthase - splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  PubMed  CAS  Google Scholar 

  • Breen GA, Jordan EM (1997) Regulation of the nuclear gene that encodes the α-subunit of the mitochondrial ATP synthase complex. Activation by upstream stimulatory factor 2. J Biol Chem 272:10538–10542

    Article  PubMed  CAS  Google Scholar 

  • Breen GA, Vander Zee CA, Jordan EM (1996) Nuclear factor YY1 activates the mammalian F0F1 ATP synthase a-subunit gene. Gene Expr 5:181–191

    PubMed  CAS  Google Scholar 

  • Camougrand N, Pélissier P, Velours G, Guérin M (1995) NCA2, a second nuclear gene required for the control of mitochondrial synthesis of subunits 6 and 8 of ATP synthase in Saccharomyces cerevisiae. J Mol Biol 247:588–596

    PubMed  CAS  Google Scholar 

  • Capaldi RA, Aggeler R, Wilkens S, Grüber G (1996) Structural changes in the γ and ε subunits of the Escherichia coli FIFO-type ATPase during energy coupling. J Bionerg Biomembr 28:397–401

    Article  CAS  Google Scholar 

  • Chen H, Morris MA, Rosier C, Blouin J-L, Antonarakis SE (1995) Cloning of the cDNA for the human ATP synthase OSCP subunit by exon trapping and mapping to chromosome 21q22.1q22.2. Genomics 28:470–476

    Article  PubMed  CAS  Google Scholar 

  • Das AM, Harris DA (1993) Regulation of the mitochondrial ATP synthase is defective in rat heart during alcohol-induced cardiomyopathy. Biochim Biophys Acta 1181:295–299

    PubMed  CAS  Google Scholar 

  • De Meirleir L, Seneca S, Lissens W, Schoentjes E, Desprechins B (1995) Bilateral striatal necrosis with a novel point mutation in the mitochondrial ATPase 6 gene. Pediatr Neurol 13:242–246

    Article  PubMed  Google Scholar 

  • Dyer MR, Walker JE (1993) Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase. Biochem J 293:51–64

    PubMed  CAS  Google Scholar 

  • Filiingame RH (1996) Membrane sectors of F- and V-type H+-transporting ATPases. Curr Opin Struct Biol 6:491–498

    Article  Google Scholar 

  • Haragushi Y, Chung AB, Neill S, Wallace DC (1994) OXBOX and REBOX overlapping promoter elements of the mitochondrial F0F1-ATP synthase β subunit gene. J Biol Chem 269:9330–9334

    Google Scholar 

  • Higuti T, Kawamura Y, Kuroiwa K, Miyazaki S, Tsujita H (1993) Molecular cloning and sequence of two cDNAs for human subunit c of H+-ATP synthase in mitochondria. Biochim Biophys Acta 1173:87–90

    PubMed  CAS  Google Scholar 

  • International Batten Disease Consortium (1995) The isolation of a novel gene underlying Batten disease (CLN3). Cell 82:949–957

    Article  Google Scholar 

  • Izquierdo JM, Jiménez E, Cuezva JM (1995) Hypothyroidism affects the expression of the β-F1- ATPase gene and limits mitochondrial proliferation in rat liver at all stages of development. Eur J Biochem 232:344–350

    Article  PubMed  CAS  Google Scholar 

  • Jabs EW, Thomas PJ, Bernstein M, Coss C, Feirreira GC, Pedersen PL (1994) Chromosomal localization of genes required for the terminal steps of oxidative metabolism: a and y subunits of ATP synthase and the pohosphate carrier. Hum Genet 93:600–602

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW, Speier S, Qian WH, Lane S, Cook A, Suzuki K, Daniel P, Boustany RM (1995) Role of subunit-9 of mitochondrial ATP synthase in Batten disease. Am J Med Genet 57:350–360

    Article  PubMed  CAS  Google Scholar 

  • Junge W, Lill H, Engelbrecht S (1997) ATP synthase: an electrochemical transducer with rotatory mechanics. TIBS 22:420–423

    PubMed  CAS  Google Scholar 

  • Kaim G, Matthey U, Dimroth P (1998) Mode of interaction of the single a subunit with the multimeric c subunits during the translocation of the coupling ions by F0F1 ATPases. EMBO J 17:688–695

    Article  PubMed  CAS  Google Scholar 

  • Lamminen T, Majander A, Juvonen V, Wikstrom M, Aula P, Nikoskelainen E, Savontaus ML (1995) A mitochondrial mutation at nt 9101 in the ATP synthase gene associated with deficient oxidative phosphorylation in a family with Leber hereditary optic neuroretinopathy. Am J Hum Genet 56:1238–1240

    PubMed  CAS  Google Scholar 

  • Matsuda C, Endo H, Ohta S, Kagawa Y (1993) Gene structure of human mitochondrial ATP synthase γ subunit. J Biol Chem 268:24950–24958

    PubMed  CAS  Google Scholar 

  • Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159

    CAS  Google Scholar 

  • Moradi-Améli M, Julliard JH, Godinot C (1989) Inhibition of mitochondrial F1-ATPase activity by an anti-α subunit monoclonal antibody which modifies interactions between catalytic and regulatory sites. J Biol Chem 264:1361–1367

    PubMed  Google Scholar 

  • Nelson BD, Luciakova K, Li R, Betina S (1995) The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta 1271:85–91

    PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1- ATPase. Nature 386:299–302

    Article  PubMed  CAS  Google Scholar 

  • Ostronoff LK, Izquierdo JM, Cuezva JM (1995) Mt-mRNA stability regulates the expression of the mitochondrial genome during liver development. Biochem Biophys Res Commun 217:1094–1098

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (1994) The machine that makes ATP. Curr Biol 4:1138–1141

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL (1996) Frontiers in ATP synthase research: understanding the relationship between subunit movements and ATP synthesis. J Bionerg Biomembr 28:389–395

    Article  CAS  Google Scholar 

  • Scarpulla RC (1997) Nuclear control of respiratory chain expression in mammalian cells. J Bionerg Biomembr 29:109–119

    Article  CAS  Google Scholar 

  • Schägger H, Ohm TG (1995) Human diseases with defects in oxidative phosphorylation 2. F1–F0 ATP-synthase defects in Alzheimer disease revealed by blue native Polyacrylamide gel electrophoresis. Eur J Biochem 227:916–921

    Article  PubMed  Google Scholar 

  • Shoffner JM, Wallace DC (1995) Oxidative phosphorylation diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 7th edn. MacGraw-Hill, New York, pp 1535–1609

    Google Scholar 

  • Tanner A, Shen BH, Dice JF (1997) Turnover of F1F0ATP synthase subunit 9 and other proteolipids in normal and Batten disease fibroblasts. Biochim Biophys Acta 1361:251–262

    PubMed  CAS  Google Scholar 

  • Van Raaij MJ, Abrahams JP, Leslie AGW, Walker JE (1996) The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proc Natl Acad Sci USA 93:6913–6917

    Article  PubMed  Google Scholar 

  • Villena JA, Martin I, Vinas O, Cormand B, Iglesias R, Mampel T, Giralt M, Villarroya F (1994) ETS transcription factors regulate the expression of the gene for the human mitochondrial ATP synthase β-subunit. J Biol Chem 269:32649–32654

    PubMed  CAS  Google Scholar 

  • Walker JE (1995) Determination of the structures of respiratory enzyme complexes from mammalian mitochondria. Biochim Biophys Acta 1271:221–227

    PubMed  Google Scholar 

  • Walker JE, Collinson IR (1994) The role of the stalk in the coupling mechanism of F1F0-ATPases. FEBS Lett 346:39–43

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC, Lott MT, Brown MD, Huoponen K, Torroni A (1995) Report of the committee on human mitochondrial DNA. In: Cuticchia AJ (ed) Human gene mapping: a compendium. Johns Hopkins University Press, Baltimore, pp 910–954 (or http://www.gen.emory.edu/mitomap.html)

    Google Scholar 

  • Wilkens S, Dahlquist FW, Mcintosh LP, Donaldson LW, Capaldi RA (1995) Structural features of the e subunit of the Escherichia coli ATP synthase determined by NMR spectroscopy. Nat Struct Biol 2:961–967

    Article  PubMed  CAS  Google Scholar 

  • Yan WL, Lerner TJ, Haines JL, Gusella JF (1994) Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Genomics 24:375–377

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buchet, K., Godinot, C. (1999). ATPase-ATP Synthase and Mitochondrial Pathology. In: Lestienne, P. (eds) Mitochondrial Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59884-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59884-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64166-4

  • Online ISBN: 978-3-642-59884-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics