Skip to main content

Transplantation in the Central Nervous System

  • Chapter
Transplantation Pathology

Part of the book series: Current Topics in Pathology ((CT PATHOLOGY,volume 92))

  • 94 Accesses

Abstract

Cells and tissues have been transplanted into the central nervous system (CNS) for a wide range of purposes. These include: (1) studies of factors controlling cell division, migration, growth and differentiation in the CNS; (2) the elucidation of mechanisms of disease; and (3) a means of restoring neurological function, both in animal models of human disease and, increasingly, in human patients. Although the first attempts at CNS transplantation date back to the last century [151], most of the significant scientific contributions in this field have been made during the past two decades. This period has also seen considerable technical advances, including improvements in the methods for obtaining, purifying and storing donor cells and tissues [5,119], the introduction of more effective immunosuppressive protocols for overcoming graft rejection [13,15,57,71,72,109], and the development of techniques for introducing, into donor cells, genes that express marker proteins, oncogenes, enzymes for neurotransmitter synthesis, and a range of neurotrophic factors. The result has been a rapid increase in the amount of reseach and the number of publications in this field. In this chapter, after a brief review of the history of CNS transplantation, the burgeoning literature on its diverse application is summarised in the context of the different biological and disease processes that have been studied or treated using this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzi A, Kleihues P, Heckl K, Wiestier OD (1991) Cell type-specific tumor induction in neural transplants by retrovirus-mediated oncogene transfer. Oncogene 6:113–118.

    PubMed  CAS  Google Scholar 

  2. Archer DR, Cuddon PA, Lipsitz D, Duncan ID (1997) Myelination of the canine central nervous system by glial cell transplantation: a model for repair of human myelin disease. Nat Med 3: 54–59.

    PubMed  CAS  Google Scholar 

  3. Backlund EO, Granberg PO, Hamberger B, et al. (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 62:169–173.

    CAS  Google Scholar 

  4. Bankiewicz KS, Plunkett RJ, Jacobowitz DM, Kopin IJ, Oldfield EH (1991) Fetal non-dopaminergic neural implants in parkinsonian primates. Histochemical and behavioral studies. J Neurosurg 74: 97–104.

    CAS  Google Scholar 

  5. Barker RA, Fricker RA, Abrous DN, Fawcett J, Dunnett SB (1995) A comparative study of preparation techniques for improving the viability of nigral grafts using vital stains, in vitro cultures, and in vivo grafts. Cell Transplant 4:173–200.

    PubMed  CAS  Google Scholar 

  6. Betarbet R, Zigova T, Bakay RA, Luskin MB (1996) Migration patterns of neonatal sub-ventricular zone progenitor cells transplanted into the neonatal striatum. Cell Transplant 5: 165–178.

    PubMed  CAS  Google Scholar 

  7. Blakemore WF, Crang AJ (1985) The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J Neurol Sci 70:207–234.

    PubMed  CAS  Google Scholar 

  8. Blakemore WF, Crang AJ, Patterson RC (1987) Schwann cell remyelination of CNS axons following injection of cultures of CNS cells into areas of persistent demyelination. Neurosci Lett 77: 20–24.

    PubMed  CAS  Google Scholar 

  9. Blakemore WF, Franklin RJ, Crang AJ (1994) Repair of demyelinated lesions by glial cell transplantation. J Neurol 242[Suppl 1]: S61–63.

    PubMed  CAS  Google Scholar 

  10. Boer GJ, Gash DM, Dick L, Schlüter N (1985) Vasopressin neuron survival in neonatal Brattleboro rats; critical factors in graft development and innervation of the host brain. Neuroscience 15:1087–1109.

    PubMed  CAS  Google Scholar 

  11. Brandner S, Isenmann S, Raeber A, Fischer M, Sailer A, Kobayashi Y, Marino S, Weissmann C, Aguzzi A (1996) Normal host prion protein necessary for scrapie induced neurotoxicity. Nature 379: 339–43.

    PubMed  CAS  Google Scholar 

  12. Bray GM, Villegas-Perez MP, Vidal-Sanz M, Aguayo AJ (1987) The use of peripheral nerve grafts to enhance neuronal survival, promote growth and permit terminal reconnections in the central nervous system of adult rats. J Exp Biol 132: 5–19.

    PubMed  CAS  Google Scholar 

  13. Brundin P, Nilsson OG, Gage FH, Björklund A (1985) Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons. Exp Brain Res 60: 204–208.

    PubMed  CAS  Google Scholar 

  14. Brundin P, Nilsson OG, Strecker RE, Lindvall O, Astedt B, Björklund A (1986) Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 65: 235–240.

    PubMed  CAS  Google Scholar 

  15. Brundin P, Strecker RE, Widner H, Clarke DJ, Nilsson OG, Astedt B, Lindvall O, Björklund A (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: immunological aspects, spontaneous and drug-induced behaviour, and dopamine release. Exp Brain Res 70: 192–208.

    PubMed  CAS  Google Scholar 

  16. Campbell K, Wictorin K, Björklund A (1995) Neurotransmitter-related gene expression in intrastriatal striatal transplants-II. Characterization of efferent projecting graft neurons. Neuroscience 64: 35–47.

    CAS  Google Scholar 

  17. Carter DA, Bray GM, Aguayo AJ (1989) Regenerated retinal ganglion cell axons can form well-differentiated synapses in the superior colliculus of adult hamsters. J Neurosci 9: 4042–50.

    PubMed  CAS  Google Scholar 

  18. Charlton HM (1992) Hypothalamic transplantation. Ciba Found Symp 168:268–275.

    PubMed  CAS  Google Scholar 

  19. Charlton HM, Jones AJ, Ward BJ, Detta A, Clayton RN (1987 a) Effects of castration or testosterone implants upon pituitary function in hypogonadal mice bearing normal fetal preoptic area grafts. Neuroendocrinology 45: 376–380.

    PubMed  CAS  Google Scholar 

  20. Charlton HM, Jones AJ, Whitworth D, Gibson MJ, Kokoris G, Zimmerman EA, Silverman AJ (1987 b) The effects of the age of intracerebroventricular grafts of normal preoptic area tissue upon pituitary and gonadal function in hypogonadal (HPG) mice. Neuroscience 21:175–181.

    PubMed  CAS  Google Scholar 

  21. Clarke DJ, Brundin P, Strecker RE, Nilsson OG, Björklund A, Lindvall O (1988) Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease: ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry. Exp Brain Res 73:115–126.

    PubMed  CAS  Google Scholar 

  22. Clowry G, Sieradzan K, Vrbova G (1991a) Grafts of embryonic tissue into spinal cord: a possible strategy for treating neuromuscular disorders. Neuromuscul Disord 1: 87–92.

    PubMed  CAS  Google Scholar 

  23. Clowry G, Sieradzan K, Vrbova G (1991b) Transplants of embryonic motoneurones to adult spinal cord: survival and innervation abilities. Trends Neurosci 14: 355–357.

    PubMed  CAS  Google Scholar 

  24. Crang AJ, Blakemore WF (1989) The effect of the number of oligodendrocytes transplanted into X-irradiated, glial-free lesions on the extent of oligodendrocyte remyelination. Neurosci Lett 103: 269–274.

    PubMed  CAS  Google Scholar 

  25. Cunningham LA, Hansen JT, Short MP, Bohn MC (1991) The use of genetically altered astrocytes to provide nerve growth factor to adrenal chromaffin cells grafted into the striatum. Brain Res 561:192–202.

    PubMed  CAS  Google Scholar 

  26. Darnell DK, Schoenwolf GC (1995) Dorsoventral patterning of the avian mesencephalon/ metencephalon: role of the notochord and floor plate in suppressing Engrailed-2. J Neuro-biol 26: 62–74.

    CAS  Google Scholar 

  27. David S, Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214: 931–933.

    PubMed  CAS  Google Scholar 

  28. del Conte G (1907) Einpfanzungen von Embryonalem Gewebe im Gehirn. Beitr Path Anat 42:193–201.

    Google Scholar 

  29. DiFiglia M, Schiff L, Deckel AW (1988) Neuronal organization of fetal striatal grafts in kainate- and sham-lesioned rat caudate nucleus: light- and electron-microscopic observations. J Neurosci 8:1112–1130.

    PubMed  CAS  Google Scholar 

  30. Duncan ID, Milward EA (1995) Glial cell transplants: experimental therapies of myelin diseases. Brain Pathol 5: 301–310.

    PubMed  CAS  Google Scholar 

  31. Dunn E J (1917) Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 27: 565–582.

    Google Scholar 

  32. Dunnett SB (1995) Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behav Brain Res 66:133–142.

    PubMed  CAS  Google Scholar 

  33. Edvardsen K, Pedersen PH, Bjerkvig R, Hermann GG, Zeuthen J, Laerum OD, Walsh FS, Bock E (1994) Transfection of glioma cells with the neural-cell adhesion molecule NCAM: effect on glioma-cell invasion and growth in vivo. Int J Cancer 58:116–122.

    PubMed  CAS  Google Scholar 

  34. Eibl RH, Kleihues P, Jat PS, Wiestier OD (1994) A model for primitive neuroectodermal tumors in transgenic neural transplants harboring the SV40 large T antigen. Am J Pathol 144: 556–564.

    PubMed  CAS  Google Scholar 

  35. Elsayed MH, Hogan TP, Shaw PL, Castro AJ (1996) Use of fetal cortical grafts in hypoxic-ischemic brain injury in neonatal rats. Exp Neurol 137:127–141.

    PubMed  CAS  Google Scholar 

  36. Epstein LG, Cvetkovich TA, Lazar ES, DiLoreto D, Saito Y, James H, del Cerro C, Kaneshima H, McCune JM, Britt WJ, et al. (1994) Human neural xenografts: progress in developing an in-vivo model to study human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) infection. Adv Neuroimmunol 4:257–260.

    PubMed  CAS  Google Scholar 

  37. Escobar ML, Russell RW, Booth RA, Bermudez Rattoni F (1994) Accelerating behavioral recovery after cortical lesions. I. Homotopic implants plus NGF. Behav Neural Biol 61: 73–80.

    CAS  Google Scholar 

  38. Fazzini E, Dwork AJ, Blum C, et al. (1991) Stereotactic implantation of autologous adrenal medulla into caudate nucleus in four patients with parkinsonism. Arch Neurol 48: 813–820.

    PubMed  CAS  Google Scholar 

  39. Fischer M, Rulicke T, Raeber A, Sailer A, Moser M, Oesch B, Brandner S, Aguzzi A, Weissmann C (1996) Prion protein (PrP) with amino-proximal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J 15:1255–1264.

    PubMed  CAS  Google Scholar 

  40. Fisher LJ, Jinnah HA, Kale LC, Higgins GA, Gage FH (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6: 371–380.

    PubMed  CAS  Google Scholar 

  41. Fisher LJ, Raymon HK, Gage FH (1993) Cells engineered to produce acetylcholine: therapeutic potential for Alzheimer’s disease. Ann N Y Acad Sci 695:278–284.

    PubMed  CAS  Google Scholar 

  42. Fitzgerald LR, Glick SD, Schneider AS (1989) Effect of striatal implantation of bovine adrenal chromaffin cells on turning behavior in a rat model of Parkinson’s disease. Brain Res 481:373–377.

    PubMed  CAS  Google Scholar 

  43. Folkerth RD, Durso R (1996) Survival and proliferation of nonneural tissues, with obstruction of cerebral ventricles, in a parkinsonian patient treated with fetal allografts. Neurology 46: 1219–1225.

    PubMed  CAS  Google Scholar 

  44. Franklin RJ, Bayley SA, Blakemore WF (1996) Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord. Exp Neurol 137: 263–276.

    PubMed  CAS  Google Scholar 

  45. Franklin RJ, Bayley SA, Milner R, Ffrench-Constant C, Blakemore WF (1995) Differentiation of the 0–2 A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia deficient areas of CNS white matter. Glia 13: 39–44.

    PubMed  CAS  Google Scholar 

  46. Freed WJ, Morisha JM, Spoor E, et al. (1981) Transplanted adrenal chromaffin cells in rat brain reduces lesion-induced rotational behaviour. Nature 292: 351–352.

    PubMed  CAS  Google Scholar 

  47. Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization, and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192.

    PubMed  CAS  Google Scholar 

  48. Gage FH, Stenevi U, Carlstedt T, Foster G, Björklund A, Aguayo AJ (1985) Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve “bridge” connected to the denervated striatum. Exp Brain Res 60:584–589.

    PubMed  CAS  Google Scholar 

  49. Gagnon C, Bedard PJ, Di Paolo T (1993) Grafts in the treatment of Parkinson’s disease: animal models. Rev Neurosci 4:17–40.

    PubMed  CAS  Google Scholar 

  50. Galpern WR, Frim DM, Tatter SB, Altar CA, Beai MF, Isacson O (1996) Cell-mediated delivery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+ rat model of substantia nigra degeneration. Cell Transplant 5: 225–232.

    PubMed  CAS  Google Scholar 

  51. Gao WQ, Hatten ME (1993) Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science 260:367–369.

    PubMed  CAS  Google Scholar 

  52. Giordano M, Hagenmeyer Houser SH, Sanberg PR (1988) Intraparenchymal fetal striatal transplants and recovery in kainic acid lesioned rats. Brain Res 446:183–188.

    PubMed  CAS  Google Scholar 

  53. Gladson CL, Wilcox JN, Sanders L, Gillespie GY, Cheresh DA (1995) Cerebral microenvironment influences expression of the vitronectin gene in astrocytic tumors. J Cell Sci 108: 947–956.

    PubMed  CAS  Google Scholar 

  54. Goetz CG, Olanow CW, Koller WC, et al. (1989) Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N Engl J Med 320: 337–341.

    PubMed  CAS  Google Scholar 

  55. Gore AC, Saitoh Y, Terasawa E (1996) Effects of adrenal medulla transplantation into the third ventricle on the onset of puberty in female rhesus monkeys. Exp Neurol 140:172–183.

    PubMed  CAS  Google Scholar 

  56. Greene HSN, Arnold H (1945) The homologous and heterologous transplantation of brain and brain tumors. J Neurosurg 2: 315–331.

    Google Scholar 

  57. Greene HSN (1953) The transplantation of human brain tumors to the brains of laboratory animals. Cancer Res 13:422–426.

    PubMed  CAS  Google Scholar 

  58. Hantraye P, Riehe D, Maziere M, Isacson O (1992) Intrastriatal transplantation of cross-species fetal striatal cells reduces abnormal movements in a primate model of Huntington disease. Proc Natl Acad Sei U S A 89:4187–4191.

    CAS  Google Scholar 

  59. Harvey AR, Minson JB, Morris MJ, Chalmers JP (1984) Embryonic hypothalamic tissue transplanted to the IVth ventricle of newborn Brattleboro rats. Neurosci Lett 52:269–274.

    PubMed  CAS  Google Scholar 

  60. Halasz B, Pupp L, Uhlarik S, et al. (1963) Growth of hypophysectomised rats bearing pituitary transplants in the hypothalamus. Acta Physiol Acad Sci Hung 23: 287–292.

    PubMed  CAS  Google Scholar 

  61. Hansen JT, Fiandaca MS, Kordower JH, Notter MFD, Gash DM (1990) Striatal adrenal medulla/sural nerve cografts in hemiparkinsonian monkeys. Prog Brain Res 82: 573–580.

    PubMed  CAS  Google Scholar 

  62. Hitchcock E (1995) Current trends in neural transplantation. Neurol Res 17: 33–37.

    PubMed  CAS  Google Scholar 

  63. Honmou O, Felts PA, Waxman SG, Kocsis JD (1996) Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells. J Neurosci 16: 3199–3208.

    PubMed  CAS  Google Scholar 

  64. Hoovler DW, Wrathall JR (1991) Implantation of neuronal suspensions into contusive injury sites in the adult rat spinal cord. Acta Neuropathol (Beri) 81: 303–311.

    CAS  Google Scholar 

  65. Hurtig H, Joyce J, Sladek JR, Trojanowski JQ (1989) Postmortem analysis of adrenal medulla to caudate autograft in a patient with Parkinson’s disease. Ann Neurol 25: 607–614.

    PubMed  CAS  Google Scholar 

  66. Ikegami S, Nihonmatsu I, Kawamura H (1991) Transplantation of ventral forebrain cholinergic neurons to the hippocampus ameliorates impairment of radial-arm maze learning in rats with AF64A treatment. Brain Res 548:187–195.

    PubMed  CAS  Google Scholar 

  67. Isacson O, Brundin P, Kelly PA, Gage FH, Björklund A (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 311: 458–460.

    PubMed  CAS  Google Scholar 

  68. Isacson O, Brundin P, Gage FH, Björklund A (1985) Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16: 799–817.

    PubMed  CAS  Google Scholar 

  69. Isacson O, Dunnett SB, Björklund A (1986) Graft-induced behavioral recovery in an animal model of Huntington disease. Proc Natl Acad Sci U S A 83: 2728–2732.

    PubMed  CAS  Google Scholar 

  70. Isacson O, Dawbarn D, Brundin P, Gage FH, Emson PC, Björklund A (1987) Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography. Neuroscience 22:481–497.

    PubMed  CAS  Google Scholar 

  71. Isacson O, Riehe D, Hantraye P, Sofroniew MV, Maziere M (1989) A primate model of Huntington’s disease: cross-species implantation of striatal precursor cells to the excito-toxically lesioned baboon caudate-putamen. Exp Brain Res 75:213–220.

    PubMed  CAS  Google Scholar 

  72. Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH (1995) Transplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1:1189–1194.

    PubMed  CAS  Google Scholar 

  73. Jeltsch H, Cassel JC, Neufang B, Kelche C, Hertting G, Jackisch R, Will B (1994) The effects of intrahippocampal raphe and/or septal grafts in rats with fimbria-fornix lesions depend on the origin of the grafted tissue and the behavioral task used. Neuroscience 63:19–39.

    PubMed  CAS  Google Scholar 

  74. Kaufman CM, Menaker M (1993) Effect of transplanting suprachiasmatic nuclei from donors of different ages into completely SCN lesioned hamsters. J Neural Transplant Plast 4: 257–265.

    PubMed  CAS  Google Scholar 

  75. Keirstead SA, Rasminsky M, Fukuda Y, Carter DA, Aguayo AJ, Vidal-Sanz M (1989) Electrophysiologic responses in hamster superior colliculus evoked by regenerating retinal axons. Science 246: 255–257.

    PubMed  CAS  Google Scholar 

  76. Kondoh T, Pundt LL, Blount JP, Conrad JA, Low WC (1996) Transplantation of human fetal tissue from spontaneous abortions to a rodent model of Parkinson’s disease. Cell Transplant 5: 69–75.

    PubMed  CAS  Google Scholar 

  77. Kordower JH, Freeman TB, Snow BJ, et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 332:1118–1124.

    PubMed  CAS  Google Scholar 

  78. Lachapelle F, Duhamel Clerin E, Gansmuller A, Baron Van Evercooren A, Villarroya H, Gumpel M (1994) Transplanted transgenically marked oligodendrocytes survive, migrate and myelinate in the normal mouse brain as they do in the shiverer mouse brain. Eur J Neurosci 6:814–824.

    PubMed  CAS  Google Scholar 

  79. Le Gros Clark WE (1940) Neuronal differentiation in implanted fetal cortical tissue. J Neurol Psychiatr 3: 263–284.

    Google Scholar 

  80. Li Y, Raisman G (1993) Long axon growth from embryonic neurons transplanted into myelinated tracts of the adult rat spinal cord. Brain Res 629:115–127.

    PubMed  CAS  Google Scholar 

  81. Li YJ, Simon JR, Low WC (1992) Intrahippocampal grafts of cholinergic-rich striatal tissue ameliorate spatial memory deficits in rats with fornix lesions. Brain Res Bull 29:147–155.

    PubMed  CAS  Google Scholar 

  82. Lindvall O (1995) Neural transplantation. Cell Transplant 4: 393–400.

    PubMed  CAS  Google Scholar 

  83. Lindvall O, Backlund ED, Farde L (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22:457–468.

    PubMed  CAS  Google Scholar 

  84. Lindvall O, Rhencrona S, Brundin P, et al. (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: a detailed account of methodology and a 6-month follow-up. Arch Neurol 46:615–631.

    PubMed  CAS  Google Scholar 

  85. Lindvall O, Sawle G, Widner H, et al. (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35:172–180.

    PubMed  CAS  Google Scholar 

  86. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148.

    PubMed  CAS  Google Scholar 

  87. Low WC, Triarhou LC, Kaseda Y, Norton J, Ghetti B (1987) Functional innervation of the striatum by ventral mesencephalic grafts in mice with inherited nigrostriatal dopamine deficiency. Brain Res 435: 315–321.

    PubMed  CAS  Google Scholar 

  88. Lucidi-Phillipi CA, Gage FH, Shults CW, Jones KR, Reichardt LF, Kang UJ (1995) Brain-derived neurotrophic factor-transduced fibroblasts: production of BDNF and effects of grafting to the adult rat brain. J Comp Neurol 354: 361–376.

    PubMed  CAS  Google Scholar 

  89. Lund RD, Hankin MH (1995) Pathfinding by retinal ganglion cell axons: transplantation studies in genetically and surgically blind mice. J Comp Neurol 356:481–489.

    PubMed  CAS  Google Scholar 

  90. Lund RD, Huschka D (1976) Transplanted neural tissue develops connections with host rat brain. Science 193: 582–584.

    PubMed  CAS  Google Scholar 

  91. Madrazo I, Drucker-Colin R, Diaz V, Martinez J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316: 831–834.

    PubMed  CAS  Google Scholar 

  92. Madrazo I, Franco-Bourland RE, Cuevas C, et al. (1991) Fetal neural grafting for the treatment of Huntington’s disease — a report of the first case. Soc Neurosci Abstracts 17:902.

    Google Scholar 

  93. Mantione JR, Kleppner SR, Miyazono M, Wertkin AM, Lee VM, Trojanowski JQ (1995) Human neurons that constitutively secrete Aß do not induce Alzheimer’s disease pathology following transplantation and long-term survival in the rodent brain. Brain Res 671: 333–337.

    PubMed  CAS  Google Scholar 

  94. Marciano FF, Gash DM (1986) Structural and functional relationships of grafted vasopressin neurons. Brain Res 370: 338–342.

    PubMed  CAS  Google Scholar 

  95. Martinez-Serrano A, Lundberg C, Horellou P, Fischer W, Bentlage C, Campbell K, McKay RD, Mallet J, Björklund A (1995) CNS-derived neural progenitor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic -neurons after transplantation into the septum. J Neurosci 15:5668–5680.

    PubMed  CAS  Google Scholar 

  96. Martinez-Serrano A, Fischer W, Soderstrom S, Ebendal T, Björklund A (1996) Long-term functional recovery from age-induced spatial memory impairments by nerve growth factor gene transfer to the rat basal forebrain. Proc Natl Acad Sci U S A 93:6355–6360.

    PubMed  CAS  Google Scholar 

  97. Moukhles H, Amalric M, Nieoullon A, Daszuta A (1994) Behavioural recovery of rats grafted with dopamine cells after partial striatal dopaminergic depletion in a conditioned reaction-time task. Neuroscience 63:73–84.

    PubMed  CAS  Google Scholar 

  98. Mudrick LA, Baimbridge KG (1991) Hippocampal neurons transplanted into ischemically lesioned hippocampus: anatomical assessment of survival, maturation and integration. Exp Brain Res 86:233–247.

    PubMed  CAS  Google Scholar 

  99. Münz M, Rasminsky M, Aguayo AJ, Vidal-Sanz M, Devor MG (1985) Functional activity of rat brainstem neurons regenerating axons along peripheral nerve grafts. Brain Res 340:115–125.

    PubMed  Google Scholar 

  100. Nakahara Y, Gage FH, Tuszynski MH (1996) Grafts of fibroblasts genetically modified to secrete NGF, BDNF, NT-3, or basic FGF elicit differential responses in the adult spinal cord. Cell Transplant 5:191–204.

    PubMed  CAS  Google Scholar 

  101. Neve RL, Kammesheidt A, Hohmann CF (1992) Brain transplants of cells expressing the carboxyl-terminal fragment of the Alzheimer amyloid protein precursor cause specific neuropathology in vivo. Proc Natl Acad Sci U S A 89: 3448–3452.

    PubMed  CAS  Google Scholar 

  102. Nikkah G, Cunningham MG, Cenci MA, McKay RD, Björklund A (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J Neurosci 15: 3548–3561.

    Google Scholar 

  103. Nilsson OG, Leanza G, Rosenblad C, Björklund A (1993) Basal forebrain grafts in the hippocampus and neocortex: regulation of acetylcholine release. Ann N Y Acad Sci 695:267–273.

    PubMed  CAS  Google Scholar 

  104. Norman AB, Giordano M, Sanberg PR (1989) Fetal striatal tissue grafts into excitotoxin-lesioned striatum: pharmacological and behavioral aspects. Pharmacol Biochem Behav 34:139–147.

    PubMed  CAS  Google Scholar 

  105. Nunn J, Hodges H (1994) Cognitive deficits induced by global cerebral ischaemia: relationship to brain damage and reversal by transplants. Behav Brain Res 65:1–31.

    PubMed  CAS  Google Scholar 

  106. Olanow CW, Kordower JH, Freeman TB (1996) Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci 19:102–109.

    PubMed  CAS  Google Scholar 

  107. Olson L, Backlund EO, Ebendal T, et al. (1991) Intraputaminal infusion of nerve growth factor to support adrenal medullary autografts in Parkinson’s disease: one year follow up of the first clinical trial. Arch Neurol 48: 373–381.

    PubMed  CAS  Google Scholar 

  108. Patel SN, Kershaw TR, Williams J, Gray JA, Lantos PL, Sinden JD (1995) Neuropathological sequelae of long-term allogeneic and syngeneic neural transplantation into the hippocampus. J Neural Transplant Plast 5: 211–222.

    PubMed  CAS  Google Scholar 

  109. Pedersen EB, Poulsen FR, Zimmer J, Finsen B (1995) Prevention of mouse-rat brain xenograft rejection by a combination therapy of cyclosporin A, prednisolone and azathioprine. Exp Brain Res 106:181–186.

    PubMed  CAS  Google Scholar 

  110. Penn RD, Goetz CG, Tanner CM, et al. (1988) The adrenal medullary transplant operations for Parkinson’s disease: clinical observations in five patients. Neurosurgery 22:999–1004.

    PubMed  CAS  Google Scholar 

  111. Pershouse MA, Stubblefield E, Hadi A, Killary AM, Yung WK, Steck PA (1993) Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res 53: 5043–5050.

    PubMed  CAS  Google Scholar 

  112. Peterson DI, Price ML, Small CS (1989) Autopsy findings in a patient who had an adrenal-to-brain transplant for Parkinson’s disease. Neurology 39: 235–238.

    PubMed  CAS  Google Scholar 

  113. Prince V, Lumsden A (1994) Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120:911–923.

    PubMed  CAS  Google Scholar 

  114. Radner H, el Shabrawi Y, Eibl RH, Brustle O, Kenner L, Kleihues P, Wiestier OD (1993) Tumor induction by ras and myc oncogenes in fetal and neonatal brain: modulating effects of developmental stage and retroviral dose. Acta Neuropathol (Beri) 86:456–465.

    CAS  Google Scholar 

  115. Ralph MR, Lehman MN (1991) Transplantation: a new tool in the analysis of the mammalian hypothalamic circadian pacemaker. Trends Neurosci 14:362–366.

    PubMed  CAS  Google Scholar 

  116. Ralph MR, Joyner AL, Lehman MN (1993) Culture and transplantation of the mammalian circadian pacemaker. J Biol Rhythms 8 [Suppl]: S83–S87.

    PubMed  Google Scholar 

  117. Ranson WS(1909) Transplantation of the spinal ganglion into the brain. Q Bull Northwest Uni Med School, pp 1–4.

    Google Scholar 

  118. Redmond DE, Sladek JR Jr, Roth RH, Collier TJ, Eisworth JD, Deutch AY, Haber S (1986) Fetal neuronal grafts in monkeys given methylphenyltetrahydropyridine. Lancet 1:1125–1127.

    PubMed  CAS  Google Scholar 

  119. Redmond DE Jr, Naftolin F, Collier TJ, Leranth C, Robbins RJ, Sladek CD, Roth RH, Sladek JR Jr (1988) Cryopreservation, culture, and transplantation of human fetal mesencephalic tissue into monkeys. Science 242: 768–771.

    PubMed  Google Scholar 

  120. Redmond DE, Leranth C, Spencer DD, et al. (1990) Fetal neural graft survival. Lancet 336: 820–822.

    PubMed  Google Scholar 

  121. Richardson PM, McGuinness UM, Aguayo AJ (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284:264–265.

    PubMed  CAS  Google Scholar 

  122. Richardson PM, Issa VM, Aguayo AJ (1984) Regeneration of long spinal axons in the rat. J Neurocytol 13:165–182.

    PubMed  CAS  Google Scholar 

  123. Richter-Levin G, Greenberger V, Segal M (1993) Regional specificity of raphe graft-induced recovery of behavioral functions impaired by combined serotonergic/cholinergic lesions. Exp Neurol 121: 256–260.

    PubMed  CAS  Google Scholar 

  124. Ridley RM, Gribble S, Clark B, Baker HF, Fine A (1992) Restoration of learning ability in fornix-transected monkeys after fetal basal forebrain but not fetal hippocampal tissue transplantation. Neuroscience 48: 779–792.

    PubMed  CAS  Google Scholar 

  125. Ridley RM, Baker JA, Baker HF, Maclean CJ (1994) Restoration of cognitive abilities by cholinergic grafts in cortex of monkeys with lesions of the basal nucleus of Meynert. Neuroscience 63: 653–666.

    PubMed  CAS  Google Scholar 

  126. Rosenblad C, Nilsson OG (1993) Basal forebrain grafts in the rat neocortex restore in vivo acetylcholine release and respond to behavioural activation. Neuroscience 55:353–362.

    PubMed  CAS  Google Scholar 

  127. Ruiz-Flandes P, Demierre B, Mattenberger L, Kato AC (1993) Migration of purified embryonic motoneurons grafted into adult mouse CNS. Int J Dev Neurosci 11:525–533.

    PubMed  CAS  Google Scholar 

  128. Saitoh Y, Luchansky LL, Claude P, Terasawa E (1995) Transplantation of the fetal olfactory placode restores reproductive cycles in female rhesus monkeys (Mucaca mulatta) bearing lesions in the medial basal hypothalamus. Endocrinology 136:2760–2769.

    PubMed  CAS  Google Scholar 

  129. Sanberg PR, Giordano M, Henault MA, Nash DR, Ragozzino ME, Hagenmeyer-Houser SH (1989) Intraparenchymal striatal transplants required for maintenance of behavioral recovery in an animal model of Huntington’s disease. J Neural Transplant 1:23–31.

    PubMed  CAS  Google Scholar 

  130. Santucci AC, Gluck R, Kanof PD, Haroutunian V (1993) Induction of memory and cortical cholinergic neurochemical recovery with combine fetal transplantation and GM1 treatments in rats with lesions of the NBM. Dementia 4: 273–281.

    PubMed  CAS  Google Scholar 

  131. Sawamura S, Sawada M, Ito M, Nagatsu T, Nagatsu I, Suzumura A, Shibuya M, Sugita K, Marunouchi T (1995) The bipotential glial progenitor cell line can develop into both oligodendrocytes and astrocytes in the mouse forebrain. Neurosci Lett 188:1–4.

    PubMed  CAS  Google Scholar 

  132. Scott DE (1984) Fetal hypothalamic transplants: neuronal and neurovascular interrelationships. Neurosci Lett 51: 93–98.

    PubMed  CAS  Google Scholar 

  133. Scott DE, Sherman DM (1984) Neuronal and neurovascular integration following transplantation of the fetal hypothalamus into the third cerebral ventricle of adult Brattleboro rats. Neurological transplants: I. Brain Res Bull 12:453–467.

    CAS  Google Scholar 

  134. Scott DE, Sherman D, Gibbs FP, Pauli WK, Gash DM (1984) The neuroanatomical and neurovascular organization of normal fetal hypothalamic explants in the third cerebral ventricle of Brattleboro rats with homozygous diabetes insipidus. Peptides 5 [Suppl 1]: 169–183.

    PubMed  CAS  Google Scholar 

  135. Shannon KM, Kordower JH (1996) Neural transplantation for Huntington’s disease: experimental rationale and recommendations for clinical trials. Cell Transplant 5:339–352.

    PubMed  CAS  Google Scholar 

  136. Sheen VL, Macklis JD (1995) Targeted neocortical cell death in adult mice guides migration and differentiation of transplanted embryonic neurons. J Neurosci 15: 8378–8392.

    PubMed  CAS  Google Scholar 

  137. Shihabuddin LS, Hertz JA, Holets VR, Whittemore SR (1995) The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line. J Neurosci 15:6666–6678.

    PubMed  CAS  Google Scholar 

  138. Shimizu K, Tsuda N, Okamoto Y, Matsui Y, Miyao Y, Tamura K, Yamada M, Nakatani S, Ikeda T, Mogami H (1988) Transplant-induced recovery from 6-OHDA lesions of the nigro-striatal dopamineneurones in mice. Acta Neurochir Suppl (Wien) 43:149–153.

    CAS  Google Scholar 

  139. Silverman AJ, Roberts JL, Dong KW, Miller GM, Gibson MJ (1992) Intrahypothalamic injection of a cell line secreting gonadotropin-releasing hormone results in cellular differentiation and reversal of hypogonadism in mutant mice. Proc Natl Acad Sci USA 89: 10668–10672.

    PubMed  CAS  Google Scholar 

  140. Sinson G, Voddi M, Mcintosh TK (1996) Combined fetal neural transplantation and nerve growth factor infusion: effects on neurological outcome following fluid-percussion brain injury in the rat. J Neurosurg 84:655–662.

    PubMed  CAS  Google Scholar 

  141. Sladek JR Jr, Eisworth JD, Roth RH, Evans LE, Collier TJ, Cooper SJ, Taylor JR, Redmond DE Jr (1993) Fetal dopamine cell survival after transplantation is dramatically improved at a critical donor gestational age in nonhuman primates. Exp Neurol 122:16–27.

    PubMed  Google Scholar 

  142. Sollars PJ, Kimble DP, Pickard GE (1995) Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci 15: 2109–2122.

    PubMed  CAS  Google Scholar 

  143. Sorensen JC, Grabowski M, Zimmer J, Johansson BB (1996) Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp Neurol 138: 227–235.

    PubMed  CAS  Google Scholar 

  144. Sotelo C (1993) Cell interactions underlying Purkinje cell replacement by neural grafting in the pcd mutant cerebellum. Can J Neurol Sci 20 [Suppl 3]: S43–S52.

    PubMed  Google Scholar 

  145. Stafekhina VS, Bragin AG, Vinogradova OS (1995) Integration of hippocampal suspension grafts with host neocortex. Neuroscience 64: 643–651.

    PubMed  CAS  Google Scholar 

  146. Steck PA, Ligon AH, Cheong P, Yung WK, Pershouse MA (1995) Two tumor suppressive loci on chromosome 10 involved in human glioblastomas. Genes Chromosomes Cancer 12: 255–261.

    PubMed  CAS  Google Scholar 

  147. Strecker RE, Miao R, Loring JF (1989) Survival and function of aggregate cultures of rat fetal dopamine neurons grafted in a rat model of Parkinson’s disease. Exp Brain Res 76: 315–322.

    PubMed  CAS  Google Scholar 

  148. Stromberg I, Herrera-Marschitz M, Ungerstedt U, Ebendal T, Olsen L (1985) Chronic implants of chromaffin tissue into the dopamine-denervated striatum. Effects on graft survival, fibre growth and rotational behavior. Exp Brain Res 60: 335–349.

    PubMed  CAS  Google Scholar 

  149. Targett MP, Sussman J, Scolding N, OLeary MT, Compston DAS, Blakemore WF (1996) Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol Appi Neurobiol 22:199–206.

    CAS  Google Scholar 

  150. Tarricone BJ, Simon JR, Low WC (1993) Intrahippocampal transplants of septal cholinergic neurons: choline acetyltransferase activity, muscarinic receptor binding, and spatial memory function. Brain Res 632:41–47.

    PubMed  CAS  Google Scholar 

  151. Thompson WG (1890) Successful brain grafting. N Y Med J 51:107.

    Google Scholar 

  152. Tontsch U, Archer DR, Dubois Dalcq M, Duncan ID (1994) Transplantation of an oligodendrocyte cell line leading to extensive myelination. Proc Natl Acad Sci U S A 91:11616–11620.

    PubMed  CAS  Google Scholar 

  153. Triarhou LC, Low WC, Ghetti B (1986) Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci USA 83:8789–8793.

    PubMed  CAS  Google Scholar 

  154. Triarhou LC, Norton J, Hingtgen JN (1995) Amelioration of the behavioral phenotype in weaver mutant mice through bilateral intrastriatal grafting of fetal dopamine cells. Exp Brain Res 104:191–198.

    PubMed  CAS  Google Scholar 

  155. Triarhou LC, Zhang W, Lee WH (1996) Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transplant 5: 269–277.

    PubMed  CAS  Google Scholar 

  156. Trotter J, Crang AJ, Schachner M, Blakemore WF (1993) Lines of glial precursor cells immortalised with a temperature-sensitive oncogene give rise to astrocytes and oligodendrocytes following transplantation into demyelinated lesions in the central nervous system. Glia 9:25–40.

    PubMed  CAS  Google Scholar 

  157. Tsai YF, Chen TJ, Pi WP, Tai MY, Huang RL, Chiueh CC, Peng MT (1995) Effects of fetal brain grafting on adult behavioral masculinization and defeminization in neonatally androgenized female rats. Neurosci Lett 190:97–100.

    PubMed  CAS  Google Scholar 

  158. Tulipán N, Huang S, Whetsell WO, Allen GS (1986) Neonatal striatal grafts prevent lethal syndrome produced by bilateral intrastriatal injection of kainic acid. Brain Res 377: 163–167.

    PubMed  Google Scholar 

  159. Tulipan N, Luo SQ, Allen GS, Whetsell WO (1988) Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage. Exp Neurol 102: 325–332.

    PubMed  CAS  Google Scholar 

  160. UHS, Werner R, Wong D (1987) Correction of genetic diabetes insipidus by adult hypothalamic grafts. Transplantation 43:485–488.

    PubMed  Google Scholar 

  161. Van Reeth O, Zhang Y, Zee PC, Turek FW (1994) Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Res 643: 338–342.

    PubMed  Google Scholar 

  162. Vicario-Abejon C, Cunningham MG, McKay RD (1995) Cerebellar precursors transplanted to the neonatal dentate gyrus express features characteristic of hippocampal neurons. J Neurosci 15: 6351–6363.

    PubMed  CAS  Google Scholar 

  163. Vignais L, Nait-Oumesmar B, Mellouk F, Gout O, Labourdette G, Baron Van Evercooren A, Gumpel M (1993) Transplantation of oligodendrocyte precursors in the adult demyelinated spinal cord: migration and remyelination. Int J Dev Neurosci 11:603–612.

    PubMed  CAS  Google Scholar 

  164. Warrington AE, Barbarese E, Pfeiffer SE (1993) Differential myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypomyelinating hosts. J Neurosci Res 34:1–13.

    PubMed  CAS  Google Scholar 

  165. Watts RL, Bakay RAE, Herring CJ, et al. (1990) Preliminary report on adrenal medullary grafting and cografting with sural nerve in the treatment of hemiparkinson monkeys. Prog Brain Res 82: 581–591.

    PubMed  CAS  Google Scholar 

  166. Weiner SA, Koty ZC (1993) Amelioration of sensory attention and sensorimotor deficits by chromaffin cell grafts to the cerebral cortex of nucleus basalis magnocellularis lesioned rats. Behav Brain Res 59: 73–81.

    Google Scholar 

  167. Wiegand SJ, Gash DM (1988) Characteristics of vasculature and neurovascular relations in intraventricular anterior hypothalamic transplants. Brain Res Bull 20:105–124.

    PubMed  CAS  Google Scholar 

  168. Wiestler OD, Aguzzi A, Schneemann M, Eibl R, von Deimling A, Kleihues P (1992 a) Oncogene complementation in fetal brain transplants. Cancer Res 52: 3760–3767.

    PubMed  CAS  Google Scholar 

  169. Wiestler OD, Brustle O, Eibl RH, Radner H, Aguzzi A, Kleihues P (1992 b) Retrovirus-mediated oncogene transfer into neural transplants. Brain Pathol 2:47–59.

    PubMed  CAS  Google Scholar 

  170. Wiestler OD, Brustle O, Eibl RH, Radner H, Aguzzi A, Kleihues P (1994) Oncogene transfer into the brain. Recent Results Cancer Res 135: 55–66.

    PubMed  CAS  Google Scholar 

  171. Winder H, Tetrud J, Rehncrona S, et al. (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). N Eng J Med 327: 1556–1563.

    Google Scholar 

  172. Wolff JA, Fisher LJ, Xu L, Jinnah HA, Langlais PJ, Iuvone PM, O’Malley KL, Rosenberg MB, Shimohama S, Friedmann T, et al. (1989) Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Proc Natl Acad Sci U S A 86: 9011–9014.

    PubMed  CAS  Google Scholar 

  173. Zhang W, Lee WH, Triarhou LC (1996) Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nat Med 2: 65–71.

    PubMed  CAS  Google Scholar 

  174. Zhou FC, Buchwald N (1989) Connectivities of the striatal grafts in adult rat brain: a rich afference and scant striatonigral efference. Brain Res 504:15–30.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

C. L. Berry

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Love, S., Hilton, D.A. (1999). Transplantation in the Central Nervous System. In: Berry, C.L. (eds) Transplantation Pathology. Current Topics in Pathology, vol 92. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59877-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59877-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64162-6

  • Online ISBN: 978-3-642-59877-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics