Skip to main content

Monte Carlo Methods

  • Chapter
Computational Materials Science

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 129))

Abstract

Nature is composed of gross assemblies of huge numbers of atoms and molecules showing a wide variety of phenomena according to the way how they are assembling. The macroscopic behaviors of such systems are rather different from the microscopic laws in the world of atoms and molecules. For example, in the usual cases of macroscopic systems, the motion of the atoms and molecules can be regarded simply as heat. That is, the average kinetic energy of each atom and molecule in a macroscopic system is equal to a quantity measured as the temperature. The other contributor to macroscopic behavior is the cooperative motion of atoms and molecules (or sometimes electrons). Since atoms and molecules interact with each other, their macroscopic assemblies can have cooperative motions. Many examples can be seen in our daily life: spring or rubber elasticity, magnetization in permanent magnets, shape memory alloys, liquid flows, surface tension of liquids, swelling of polymers by water absorption, etc. Sometimes such cooperative motions are frozen as the temperature decreases. In this case, the states which have been realized at higher temperatures become unstable. This phenomenon is called a phase transition [1,2]. For example, ferromagnets show nonzero magnetization below the Curie temperature, and superconductors show zero resistivity below a certain temperature called the critical temperature. These phase transitions accompany a spontaneous symmetry breakdown (i.e. the breakdown of symmetry in the spin direction in magnets or in the electric gauge in superconductors) and do not produce latent heat or a volume change at the transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971).

    Google Scholar 

  2. K. Binder, ed., The Monte Carlo Method in Condensed Matter Physics (Springer, Berlin, Heidelberg, 1992).

    Google Scholar 

  3. K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics (Springer, Berlin, Heidelberg, 1988).

    MATH  Google Scholar 

  4. K. Binder, ed., Monte Carlo Methods in Statistical Physics (Springer, Berlin, Heidelberg, 1979).

    Google Scholar 

  5. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1959, 1980).

    Google Scholar 

  6. D. E. Knuth, The Art of Computer Programming, edited by M. A. Harrison, Vol. 2 (Addison-Wesley, Reading, Massachusetts, 1981) Chapter 3.

    Google Scholar 

  7. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. M. Teller and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  ADS  Google Scholar 

  8. R. J. Glauber, J. Math. Phys. 4, 294 (1963).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 2, edited by C. Domb and M. S., Green (Academic Press, London, 1972) Chapter 11.

    Google Scholar 

  10. B. I. Halperin, P. C. Hohenberg and S.-K. Ma, Phys. Rev. Lett. 29, 1548 (1972); P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

    Google Scholar 

  11. J. M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  12. R. Evans, in Liquids at Interfaces, edited by J. Charvolin, J. F. Joanny and J. Zinn-Justin (North-Holla.

    Google Scholar 

  13. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 1996).

    MATH  Google Scholar 

  14. F. Yonezawa, in Solid State Physics, Vol. 45, edited by H. Ehrenreich and D. Turnbull (Academic Press, San Diego, 1991) p. 179.

    Google Scholar 

  15. R. H. Jones and W. W. Gerberich, eds., Modeling Environmental Effects on Crack Growth Processes (Metallurgical Society of the AIME, Warrendale, Pennsylvania, 1986).

    Google Scholar 

  16. W. Eckstein, Computer Simulation of Ion-Solid Interactions, Materials Science Series, Vol. 10, (Springer, Berlin, Heidelberg, 1991) Chapter 4.

    Google Scholar 

  17. A. R. Leach, Molecular Modeling (Longman, Harlow, 1996).

    Google Scholar 

  18. L. Monnerie and U. W. Suter, Atomistic Modeling of Physical Properties, Advances in Polymer Science, Vol. 116, (Springer, Berlin, Heidelberg, 1994).

    Book  Google Scholar 

  19. A. Gavezzotti, Theoretical Aspects and Computer Modeling of the Molecular Solid State (Wiley, New York, 1997).

    Google Scholar 

  20. M.-C. Desjonquères and D. Spanjaard, Concepts in Surface Physics, 2nd ed. (Springer, Berlin, Heidelberg, 1995).

    Google Scholar 

  21. M. N. Rosenbluth and A. W. Rosenbluth, J. Chem. Phys. 22, 881 (1954).

    Article  ADS  Google Scholar 

  22. B. J. Alder and T. E. Wainwright, J. Chem. Phys. 27, 1208 (1957).

    Article  ADS  Google Scholar 

  23. W. W. Wood and J. D. Jacobson, J. Chem. Phys. 27, 1207 (1957).

    Article  ADS  Google Scholar 

  24. W. W. Wood and F. R. Parker, J. Chem. Phys. 27, 720 (1957).

    Article  ADS  Google Scholar 

  25. T. R. McDonald and K. Singer, Faraday Disc. 43, 40 (1967).

    Article  Google Scholar 

  26. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Article  ADS  Google Scholar 

  27. S. Kumer, D. Bouzida, R. H. Swendsen, P. A. Kollman and J. M. Rosenberg, J. Comput. Chem. 13, 1011 (1992).

    Article  Google Scholar 

  28. E. M. Boczko and C. L. Brooks, III, J. Phys. Chem. 97, 4509 (1993); Science 269, 393 (1995).

    Google Scholar 

  29. D. J. Adams, Mol. Phys. 28, 1241 (1974).

    Article  ADS  Google Scholar 

  30. L. A. Rowley, D. Nicholson, N. G. Parsonage, J. Comput. Phys. 17, 401 (1975).

    Article  ADS  Google Scholar 

  31. A. Z. Panagiotopoulos, Mol. Phys. 61, 813 (1987); 62, 701 (1987).

    Google Scholar 

  32. B. Widom, J. Chem. Phys. 39, 2802 (1963).

    Article  ADS  Google Scholar 

  33. J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).

    Article  ADS  Google Scholar 

  34. D. Frenkel and A. J. C. Ladd, J. Chem. Phys. 81, 3188 (1984).

    Article  ADS  Google Scholar 

  35. C. H. Bernett, J. Comput. Phys. 22, 245 (1976).

    Article  ADS  Google Scholar 

  36. G. M. Torrie and J. P. Valleau, J. Comput. Phys. 23, 187 (1977).

    Article  ADS  Google Scholar 

  37. S. C. Harvey and M. Prabhakaran, J. Phys. Chem. 91, 4799 (1987).

    Article  Google Scholar 

  38. D. Chandler, An Introduction to Modern Statistical Mechanics (Oxford Universion Press, New York, 1987).

    Google Scholar 

  39. J. Mezei, J. Comput. Phys. 68, 237 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. R. W. W. Hooft, J. Chem. Phys. 97, 6690 (1992).

    Article  ADS  Google Scholar 

  41. C. Bartels, M. Karplus, J. Comput. Chem. 18, 1450 (1997); J. Phys. Chem. B 102, 865 (1998).

    Google Scholar 

  42. B. A. Berg and T. Neuhaus, Phys. Lett. B 267, 249 (1991).

    Article  ADS  Google Scholar 

  43. B. A. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992).

    Article  ADS  Google Scholar 

  44. U. H. E. Hansmann and Y. Okamoto, J. Comput. Chem. 14, 1333 (1993).

    Article  Google Scholar 

  45. Y. Okamaoto and U. H. E. Hansmann, J. Phys. Chem. 99, 11276 (1995).

    Article  Google Scholar 

  46. U. H. E. Hansmann, Y. Okamoto and F. Eisenmenger, Chem. Phys. Lett. 259, 321 (1996).

    Article  ADS  Google Scholar 

  47. N. Nakajima, H. Nakamura and A. Kidera, J. Phys. Chem. B 101, 817 (1997).

    Article  Google Scholar 

  48. C. Bartels and M. Karplus, J. Phys. Chem. 102, 865 (1998).

    Article  Google Scholar 

  49. D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Tay¬lor and Francis, London, 1992, 1994).

    Google Scholar 

  50. P. W. Kasteleyn and P. W. Fortuin, J. Phys. Soc. Jpn. Suppl. 26, 11 (1969); P. W. Fortuin and P. W. Kasteleyn, Physica (Utrecht) 57, 536 (1972).

    Google Scholar 

  51. R. J. Baxter, J. Stat. Phys. 15, 485 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  52. R. J. Baxter,6 Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  53. F. Family and T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).

    MATH  Google Scholar 

  54. T. Vicsek, Fractal Growth Phenomena, 2nd ed. (World Scientific, Singapore, 1992).

    MATH  Google Scholar 

  55. R. J. Reynolds, H. E. Stanley and W. Klein, J. Phys. C: Condens. Matt. 10, L167 (1977); Phys. Rev. B 21, 1223 (1980).

    Google Scholar 

  56. J. Bernasconi, Phys. Rev. B 18, 2185 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  57. H. Nakanishi and R. J. Reynolds, Phys. Lett. A 71, 252 (1979).

    Article  ADS  Google Scholar 

  58. P. D. Eschbach, D. Stauffer and H. J. Herrmann, Phys. Rev. B 23, 422 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Conglio, Phys. Rev. Lett. 46, 250 (1981).

    Article  ADS  Google Scholar 

  60. R. M. Ziff, Phys. Rev. Lett. 69, 2670 (1992).

    Article  ADS  Google Scholar 

  61. T. C. Lubensky and J. Issacson, Phys. Rev. Lett, bf 41, 829 (1978); Phys. Rev. A 20, 2130 (1979).

    Google Scholar 

  62. J. Issacson and T. C. Lubensky, J. Physique 41, L469 (1980).

    Article  Google Scholar 

  63. G. Parisi and N. Sourlas, Phys. Rev. Lett. 46, 871 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  64. S. Kumer, in Computer Simulation of Polymers, edited by E. A. Colbourn (Longman Scientific & Technical, London, 1994) chapter 7; K. Binder, ibid., chapter 3.

    Google Scholar 

  65. K. Binder, ed., Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995).

    Google Scholar 

  66. K. Ohno and K. Binder, J. Stat. Phys. 64, 781 (1991); K. Ohno, Macromolecular Symposia, 81, 121 (1994).

    Google Scholar 

  67. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  68. P. G. de Gennes, Phys. Lett. A 38, 339 (1972).

    Article  ADS  Google Scholar 

  69. K. Ohno and K. Binder, J. Physique 49, 1329 (1988).

    Article  MathSciNet  Google Scholar 

  70. J. des Cloizeaux, J. Physique 42, 635 (1981).

    Google Scholar 

  71. J. J. Freire, in Advances in Polymer Science, Vol. 143 (Springer, Berlin, Heidelberg, 1999) p. 37.

    Google Scholar 

  72. P. J. Flory, J. Chem. Phys. 9, 660 (1941); P. J. Flory, J. Chem. Phys. 10, 51 (1942).

    Google Scholar 

  73. M. L. Huggins, J. Chem. Phys. 9, 440 (1941).

    Article  ADS  Google Scholar 

  74. A. R. Miller, Proc. Cambridge Philos. Soc. 39, 54 (1942).

    Article  ADS  Google Scholar 

  75. E. A. Guggenheim, Proc. R. Soc. Lond. A 183, 213 (1944).

    Article  ADS  Google Scholar 

  76. J. des Cloizeaux, J. Physique 36, 281 (1975).

    Google Scholar 

  77. K. Shida, K. Ohno, M. Kimura and Y. Kawazoe, Comput. Theor. Polymer Sci., to appear.

    Google Scholar 

  78. K. Ohno, K. Shida, M. Kimura and Y. Kawazoe, Macromolecules 29, 2269 (1996).

    Article  ADS  Google Scholar 

  79. A. Rubio and J. Freire, Macromolecules 29, 6946 (1996).

    Article  ADS  Google Scholar 

  80. S. Kumer, I. Szleifer and A. Panagiotopoulos, Phys. Rev. Lett. 66, 2935 (1991).

    Article  ADS  Google Scholar 

  81. S. Kumer, in Computer Simulation of Polymers edited by E. A. Colbourn (Longman Scientific & Technical, London, 1994) chapter 7.

    Google Scholar 

  82. B. Widom, J. Chem. Phys. 39, 11 (1963); J. Chem. Phys. 39, 2808 (1963).

    Google Scholar 

  83. W. G. Madden, A. I. Pesci and K. F. Freed, Macromolecules 23, 1181 (1990).

    Article  ADS  Google Scholar 

  84. B. Smit, S. Karaborni and J. I. Siepmann, Macromol. Symp. 81, 343 (1994).

    Article  Google Scholar 

  85. H. A. Kramers, J. Chem. Phys. 14, 415 (1946).

    Article  ADS  Google Scholar 

  86. H. L. Frisch, N. Pistoor, A. Sariban, K. Binder and S. Fesjian, J. Chem. Phys. 89, 5194 (1988).

    Article  ADS  Google Scholar 

  87. B. H. Zimm, Macromolecues 13, 592 (1980); Macromolecules 17, 795 (1984); Macromolecules 17, 2441 (1984).

    Google Scholar 

  88. M. K. Wilkinson, D. S. Gaunt, L. E. G. Lipson and S. G. Wittingon, Macromolecules 21, 1818 (1988).

    Article  ADS  Google Scholar 

  89. K. Shida, K. Ohno, M. Kimura, Y. Kawazoe and Y. Nakamura, Macromolecules 31, 2343 (1998).

    Article  ADS  Google Scholar 

  90. A. K. Kron, Vysokomol. Soedin. 7, 1228 (1965) [Polym. Sci. USSR 7, 1361 (1965)]; F. T. Wall and F. Mandel, J. Chem. Phys. 63, 4592 (1975).

    Google Scholar 

  91. I. Carmesin and K. Kremer, J. Physique 51, 915 (1990).

    Article  Google Scholar 

  92. K. Ohno, M. Schulz, K. Binder and H. L. Frisch, J. Chem. Phys. 101, 4452 (1994).

    Article  ADS  Google Scholar 

  93. N. Urakami and M. Takasu, J. Phys. Soc. Jpn. 65, 2694 (1996).

    Article  ADS  Google Scholar 

  94. M. Murat and T. A. Witten, Macromolecules 23, 520 (1990).

    Article  ADS  Google Scholar 

  95. M. Seul and D. Andelman, Science 267, 476 (1995).

    Article  ADS  Google Scholar 

  96. M. Ishihara, H. Mizuseki, K. Ohno and Y. Kawazoe, in Proc. Fourth Int. Symp. Phys. Magn. Mater. (1998), to appear.

    Google Scholar 

  97. K. Binder, Phys. Rev. Lett 45, 811 (1980).

    Article  ADS  Google Scholar 

  98. R. Kikuchi, Phys. Rev. 81, 988 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. N. S. Golsov, L. E. Popov and L. Ya. Pudan, J. Phys. Chem. Solids 34, 1149 (1973); J. Phys. Chem. Solids 34, 1157 (1973).

    Google Scholar 

  100. R. Kikuchi and H. Sato, Acta Metall. 22, 1099 (1974).

    Article  Google Scholar 

  101. T. Matsumiya, H. Sawada, W. Yamada and A. Nogami, in Computer Aided Innovation of New Materials, edited by M. Doyama et al. (Elsevier, Amsterdam, 1991) p. 779.

    Google Scholar 

  102. K. Terakura, T. Oguchi, T. Mohri and K. Watanabe, Phys. Rev. B 35, 2169 (1987).

    Article  ADS  Google Scholar 

  103. T. Mohri, Bull. JIM, 28, 268 (1989).

    Google Scholar 

  104. G. J. Ackland and V. Vitek, Phys. Rev. B 41, 10 324 (1990).

    Google Scholar 

  105. H. Ichikawa, Master Thesis, Tohoku University (1999).

    Google Scholar 

  106. B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Models (Harbard University Press, Cambridge, Massachusetts, 1973).

    Google Scholar 

  107. C. Domb and M. F. Sykes, Proc. Roy. Soc. A 240, 214 (1957); J. Math. Phys. 2, 63 (1961).

    Google Scholar 

  108. H. E. Stanley, in Phase Transitions and Critical Phenomena, Vol. 3, edited by C. Domb and M. S. Green (Academic Press, New York, 1974) p. 485.

    Google Scholar 

  109. M. Suzuki, J. Phys. Soc. Jpn. 55, 4205 (1986); Prog. Theor. Phys. Suppl. 87, 1 (1986).

    Google Scholar 

  110. M. Suzuki, M. Katori, X. Hu, J. Phys. Soc. Jpn. 56, 3092 (1987); X. Hu, M. Katori and M. Suzuki, J. Phys. Soc. Jpn. 56, 3865 (1987).

    Google Scholar 

  111. E. Stoll, K. Binder and T. Schneider, Phys. Rev. B 8, 3266 (1973).

    Article  ADS  Google Scholar 

  112. J. Tobochnik, S. Sarker and R. Cordery, Phys. Rev. Lett 46, 1417 (1981).

    Article  ADS  Google Scholar 

  113. M. C. Yalabik and J. D. Gunton, Phys. Rev. B 25, 534 (1082).

    Article  Google Scholar 

  114. S. L. Katz, J. D. Gunton and C. P. Liu, Phys. Rev. B 25, 6008 (1982).

    Article  ADS  Google Scholar 

  115. M. N. Barber, R. B. Pearson, J. L. Richardson, D. Touissaint, Phys. Rev. B 32, 1720 (1985).

    Article  ADS  Google Scholar 

  116. A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081 (1991).

    Article  ADS  Google Scholar 

  117. C. Domb and M. F. Sykes, Proc. Roy. Soc. A 240, 214 (1957); J. Math. Phys. 2, 63 (1961).

    Google Scholar 

  118. D. S. Gaunt and M. F. Sykes, J. Phys. A: Math., Nucl. Gen. 6, 1517 (1973).

    Google Scholar 

  119. H. E. Stanley, in Phase Transitions and Critical Phenomena, Vol. 3, edited by C. Domb and M. S. Green (Academic Press, New York, 1974) p. 485.

    Google Scholar 

  120. K. G. Wilson, Phys. Rev. B 4, 3174 (1971); Phys. Rev. B 4, 3184 (1971); Phys. Rev. Lett. 28, 548 (1972).

    Google Scholar 

  121. K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

    Article  ADS  Google Scholar 

  122. E. Brézin, J. C. Le Guillou, J. Zinn-Justin and B. Nickel, Phys. Lett. A 44, 227 (1973).

    Article  ADS  Google Scholar 

  123. G. A. Baker, Jr., B. G. Nickel, M. S. Green and P. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976).

    Article  ADS  Google Scholar 

  124. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977).

    Article  ADS  Google Scholar 

  125. S. K. Ma, Modem Theory of Critical Phenomena, Frontiers in Physics, Lecture Note Series, Vol. 46 (Benjamin, Reading, Massachusetts, 1976).

    Google Scholar 

  126. D. P. Landau, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer, Berlin, Heidelberg, 1992,1995) Chapter 2.

    Google Scholar 

  127. R. J. Elliot, Phys. Rev. 124, 346 (1961).

    Article  ADS  Google Scholar 

  128. E. I. Dinaburg, A. E. Mazel and Ya G. Sinai, Sov. Sci. Rev. C 6, 113 (1987).

    Google Scholar 

  129. M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  130. W. Selke, Z. Phys. B 29, 133 (1978); Z. Phys. B 43, 335 (1981).

    Article  ADS  Google Scholar 

  131. W. Selke and M. E. Fisher, Phys. Rev. B 20, 257 (1979); Z. Phys. B 40, 71 (1980).

    Google Scholar 

  132. E. B. Rasmussen and S. J. Knak Jensen, Phys. Rev. 24, 2744 (1989).

    Google Scholar 

  133. W. Selke, J. Magn. Mag. Mat. 9, 7 (1978); Sol. State Commun. 27, 1417 (1978); Z. Phys. C: Condens. Matt. 13, L261 (1980).

    Google Scholar 

  134. S. Redner and H. E. Stanley, J. Phys. C: Condens. Matt. 10, 4765 (1978); Phys. Rev. B 16, 4901 (1977a, b).

    Google Scholar 

  135. W. Selke, in Phase Transitions and Critical Phenomena, Vol. 15, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1992) p. 1.

    Google Scholar 

  136. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  137. M. Mezard, G. Parisi and M. A. Virasoro, Spin Glass Theory and Beyond, Lecture Notes in Physics, Vol. 9 (World Scientific, Singapore, 1987).

    Google Scholar 

  138. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57, 2607 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  139. J. S. Wang and R. H. Swendsen, Phys. Rev. B 37, 7745 (1988).

    Article  ADS  Google Scholar 

  140. B. A. Berg, U. E. Hansmann and T. Celik, Nucl. Phys. B 42, 905 (1995).

    Article  Google Scholar 

  141. E. Marinari and G. Parisi, Europhys. Lett. 19, 451 (1992).

    Article  ADS  Google Scholar 

  142. H. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49, 1565 (1982).

    Article  ADS  Google Scholar 

  143. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1988) p. 1.

    Google Scholar 

  144. Y. Okabe and K. Ohno, Phys. Rev. 30, 6573 (1984).

    Article  ADS  Google Scholar 

  145. K. Binder, in Phase Transitions and Critical Phenomena, Vol. 8, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1983) pp. 1, 467.

    Google Scholar 

  146. K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461 (1972); Phys. Rev. B 9, 2194 (1974).

    Google Scholar 

  147. M. Kikuchi and Y. Okabe, Prog. Theor. Phys. 74, 458 (1985).

    Article  ADS  Google Scholar 

  148. Y. Okabe, M. Kikuchi and K. Ohno, Prog. Theor. Phys. 75, 496 (1986).

    Article  ADS  Google Scholar 

  149. K. Ohno and Y. Okabe, J. Phys. Soc. Jpn. 55, 2627 (1986).

    Article  ADS  Google Scholar 

  150. S. G. Whittington, G. M. Torrie and A. J. Guttmann, J. Phys. A.: Math. Gen. 12, 2449 (1979).

    Google Scholar 

  151. K. Ohno, Y. Okabe and A. Morita, Prog. Theor. Phys. 71, 714 (1984).

    Article  ADS  Google Scholar 

  152. H. W. Diehl, in Phase Transitions and Critical Phenomena, Vol. 10, edited by C. Domb and J. L. Lebowitz, (Academic Press, London, 1986) p. 75.

    Google Scholar 

  153. K. Ohno, in Trends in Statistical Physics, (Research Trends, Poojapura, Trivandrum, 1999), in press.

    Google Scholar 

  154. K. Binder and P. C. Hohenberg, Phys. Rev. B 6, 3461 (1972); Phys. Rev. B 9, 2194 (1974).

    Google Scholar 

  155. M. Kikuchi and Y. Okabe, Prog. Theor. Phys. 74, 458 (1985).

    Article  ADS  Google Scholar 

  156. R. Zorn, H. J. Herrmann and C. Rebbi, Comput. Phys. Commun. 23, 337 (1981).

    Article  ADS  Google Scholar 

  157. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Article  ADS  Google Scholar 

  158. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Article  ADS  Google Scholar 

  159. U. Wolff, Phys. Lett. B 228, 379 (1989); Nucl. Phys. B 322, 759 (1989).

    Google Scholar 

  160. R. H. Swendsen, J.-S. Wang and A. M. Ferrenberg, in The Monte Carlo Method in Condensed Matter Physics, edited by K. Binder (Springer, Berlin, Heidelberg, 1992,1995) Chapter 4.

    Google Scholar 

  161. T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  162. H. E. Stanley, Phys. Rev. 176, 718 (1968).

    Article  ADS  Google Scholar 

  163. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  164. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).

    ADS  Google Scholar 

  165. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  166. S. Miyashita, H. Nishimori, A. Kuroda and M. Suzuki, Prog. Theor. Phys. 60, 1669 (1978).

    Article  ADS  Google Scholar 

  167. J. Tobochnik and G. V. Chester, Phys. Rev. B 20, 3761 (1979).

    Article  ADS  Google Scholar 

  168. J. E. Van Himbergen and S. Chakravarty, Phys. Rev. B 23, 359 (1981).

    Article  ADS  Google Scholar 

  169. H. Betsuyaku, Physica A 106, 311 (1981).

    Article  ADS  Google Scholar 

  170. D. P. Landau, J. Mag. Mag. Mat. 31–34, 1115 (1983).

    Article  Google Scholar 

  171. M. Hasenbusch and S. Meyer, Phys. Lett. B 241, 238 (1990).

    Article  ADS  Google Scholar 

  172. W. Janke, Phys. Lett. A 148, 306 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  173. A. P. Gottlob and M. Hasenbusch, Physica A 201, 593 (1993).

    Article  ADS  Google Scholar 

  174. R. G. Bowers and G. S. Joyce, Phys. Rev. Lett. 19, 630 (1967).

    Article  ADS  Google Scholar 

  175. M. Ferer, M. A. Moore and M. Wortis, Phys. Rev. B 8, 5205 (1973).

    Article  ADS  Google Scholar 

  176. P. J. Wood and G. S. Rushbrooke, Phys. Rev. Lett. 17, 307 (1966).

    Article  ADS  Google Scholar 

  177. M. Ferer, M. A. Moore and M. Wortis, Phys. Rev. B 4, 3954 (1971).

    Article  ADS  Google Scholar 

  178. R. E. Watson, M. Blume and G. H. Vineyard, Phys. Rev. 181, 811 (1969).

    Article  ADS  Google Scholar 

  179. K. Binder and H. Rauch, Z. Phys. 219, 201 (1969).

    Article  ADS  Google Scholar 

  180. K. Binder, H. Rauch and V. Wildpaner, J. Phys. Chem. Solids 31, 391 (1970).

    Article  ADS  Google Scholar 

  181. P. Peczak, A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 43, 6087 (1991).

    Article  ADS  Google Scholar 

  182. K. Binder, Phys. Rev. Lett. 47, 693 (1981); Z. Phys. B 43, 119 (1981).

    Google Scholar 

  183. G. S. Pawley, R. H. Swendsen, D. J. Wallece and K. G. Wilson, Phys. Rev. B 29, 4030 (1984).

    Article  ADS  Google Scholar 

  184. L. P. Kadanoff, Physics (New York) 2, 263 (1966).

    Google Scholar 

  185. P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific, Singapore, 1991).

    MATH  Google Scholar 

  186. C. Rabbi and R. H. Swendsen, Phys. Rev. B 21, 4094 (1980).

    Article  ADS  Google Scholar 

  187. S. Y. Tang and D. P. Landau, J. Appi. Phys. 61, 4409 (1987); Phys. Rev. B 43, 6006 (1991).

    Google Scholar 

  188. S. J. K. Jensen and O. G. Mouritsen, Phys. Rev. Lett. 43, 1736 (1979).

    Article  ADS  Google Scholar 

  189. H. J. Herrmann, Z. Phys. 35, 171 (1979).

    Google Scholar 

  190. H. W. J. Blöte and R. H. Swendsen, J. Appl. Phys. 50, 7382 (1979); J. Magn. Mag. Mat. 15–18, 399 (1980).

    Google Scholar 

  191. J. R. Banavar, G. S. Grest and D. Jasnow, Phys. Rev. Lett. 45, 1424 (1980); Phys. Rev. B 25, 4639 (1982).

    Google Scholar 

  192. B. Hoppe and L. L. Hirst, J. Phys. A: Math. Gen. 18, 3375 (1986); Phys. Rev. B 34, 6589 (1986).

    Google Scholar 

  193. J.-S. Wang, R. H. Swendsen and R. Kotecký, Phys. Rev. Lett. 63, 109 (1989); Phys. Rev. B 42, 2465 (1990).

    Google Scholar 

  194. A. P. Gottlob and Hasenbusch, Physica A 210, 217 (1994).

    Google Scholar 

  195. K. Yasumura and T. Oguchi, J. Phys. Soc. Jpn. 53, 515 (1984).

    Article  ADS  Google Scholar 

  196. Y. Okabe and M. Kikuchi, in Computational Approaches in Condens ed-Matter Physics, Proceedings in Physics, Vol. 70, edited by S. Miyashita, M. Imada and H. Takayama (Springer, Berlin, Heidelberg, 1992) p. 193

    Google Scholar 

  197. K. Ohno, H.-O. Carmesin, H. Kawamura and Y. Okabe, Phys. Rev. B 42, 10360 (1990).

    Article  ADS  Google Scholar 

  198. P. A. Lebwohl and G. Lasher, Phys. Rev. A 6, 426 (1972).

    Article  ADS  Google Scholar 

  199. K. Binder and J. D. Reger, Advances in Physics 41, 547 (1992).

    Article  ADS  Google Scholar 

  200. H. O. Carmesin and K. Ohno, J. Magn. Magn. Mater. 104–107, 264 (1992).

    Article  Google Scholar 

  201. I. V. Markov, Crystal Growth for Beginners (World Scientific, Singapore, 1979).

    Google Scholar 

  202. Y. Saito, Statistical Physics of Crystal Growth (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  203. E. Mayer, J. Cryst. Growth 74, 425 (1986).

    Article  ADS  Google Scholar 

  204. K. Ohno, H. Trinkaus, H. Müller-Krumbhaar, J. Cryst. Growth 99, 68 (1990).

    Article  ADS  Google Scholar 

  205. R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).

    Article  MATH  Google Scholar 

  206. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  207. K. Binder and P. Stauffer, Phys. Rev. Lett. 33, 1006 (1974).

    Article  ADS  Google Scholar 

  208. R. Sahara, H. Mizuseki, K. Ohno, S. Uda, T. Fukuda and Y. Kawazoe, Sci. Rep. Res. Inst. Tohoku Univ. A 43, 23 (1997).

    Google Scholar 

  209. I. M. Lifshitz, Sov. Phys. JETP 15, 939 (1962).

    Google Scholar 

  210. J. D. Gunton, in Phase Transitions and Critical Phenomena, Vol. 8, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1983) pp. 267, 479.

    Google Scholar 

  211. K. Binder and P. Stauffer, Advanc. Phys. 25, 343 (1976).

    Article  ADS  Google Scholar 

  212. G. Gompper and M. Schick, Self-Assembling Amphiphilic Systems, Phase Transitions and Critical Phenomena, Vol. 16, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1994); K. Kawasaki and T. Kawakatsu, Physica A 164, 549 (1990).

    Google Scholar 

  213. B. Widom, J. Chem. Phys. 84, 6943 (1986).

    Article  ADS  Google Scholar 

  214. S. T. Milner and T. A. Witten, J. Physique 49, 1951 (1988).

    Article  Google Scholar 

  215. P. Chandra and S. A. Safran, Europhys. Lett. 17, 691 (1992).

    Article  ADS  Google Scholar 

  216. D. Wu, D. Chandler and B. Smit, J. Phys. Chem. 96, 4077 (1992).

    Article  Google Scholar 

  217. Y. Okabe, private communication.

    Google Scholar 

  218. W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34, 323 (1963).

    Article  ADS  Google Scholar 

  219. W. Kossel, Nach. Ges. Wiss. Göttingen 135 (1927).

    Google Scholar 

  220. W. Kossel, Naturwissenschaften 18, 901 (1930).

    Article  ADS  Google Scholar 

  221. I. Stranski and R. Kaischew, Z. Phys. Chem. B 26, 31 (1934).

    Google Scholar 

  222. M. Volmer, Kinetik der Phasenbildung (Leipzig, Leipzig, 1939).

    Google Scholar 

  223. R. H. Swendsen, Phys. Rev. B 15, 5421 (1977); Phys. Rev. B 18, 492 (1978).

    Google Scholar 

  224. G. Gompper, D. M. Kroll and R. Lipowsky, Phys. Rev. B 42, 961 (1990).

    Article  ADS  Google Scholar 

  225. W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. R. Soc. Lond. A 243, 299 (1950–1).

    Google Scholar 

  226. J. J. Harris, B. A. Joyce and P. J. Dobson, Surf. Sei. 103, L90 (1981).

    Article  Google Scholar 

  227. C. E. C. Wood, Surf. Sci. 108, L441 (1981).

    Article  ADS  Google Scholar 

  228. W. Braun, L. Däweritz and K. H. Ploog, Phys. Rev. Lett. 80, 4935 (1998).

    Article  ADS  Google Scholar 

  229. R. L. Schwoebel and E. J. Shipsey, J. Appi. Phys. 37, 3682 (1966).

    Article  ADS  Google Scholar 

  230. R. L. Schwoebel, J. Appl. Phys. 40, 614 (1969).

    Article  ADS  Google Scholar 

  231. M. Uwaha and Y. Saito, Phys. Rev. Lett. 68, 224 (1992).

    Article  ADS  Google Scholar 

  232. M. Sato, M. Uwaha and Y. Saito, Phys. Rev. Lett. 80, 4233 (1998).

    Article  ADS  Google Scholar 

  233. P. Meakin, in Phase Transitions and Critical Phenomena, Vol. 12, edited by C. Domb and J. L. Lebowitz (Academic Press, London, 1988) p. 335.

    Google Scholar 

  234. H. E. Stanley and N. Ostrowsky, Random Fluctuations and Pattern Growth: Experiments and Models (Kluwer, Amsterdam, 1988).

    Google Scholar 

  235. B. H. Kaye, A Random Walk Through Fractal Dimensions (VCH, Weinheim, 1989).

    MATH  Google Scholar 

  236. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  237. P. Meakin, Phys. Rev. A 27, 604 (1983); Phys. Rev. A 27, 1495 (1983).

    Google Scholar 

  238. K. Ohno, K. Kikuchi and H. Yasuhara, Phys. Rev. A 46, 3400 (1992).

    Article  ADS  Google Scholar 

  239. M. Muthukumer, Phys. Rev. Lett. 50, 839 (1983); M. Tokuyama and K. Kawasaki, Phys. Lett. A 100, 337 (1984).

    Google Scholar 

  240. H. Fujikawa and M. Matsushita, J. Phys. Soc. Jpn. 60, 88 (1991).

    Article  ADS  Google Scholar 

  241. H. C. Fogedby, J. Phys. Soc. Jpn. 60, 704 (1991).

    Article  ADS  Google Scholar 

  242. M. Ohgiwari, M. Matsushita and T. Matsuyama, J. Phys. Soc. Jpn. 61, 816 (1992).

    Article  ADS  Google Scholar 

  243. M. Eden, in Proceedings of the Fourth Berkeley Symposium on Mathemati¬cal Statistics and Probability, Vol. IV, edited by J. Neyman (University of California Press, Berkeley, 1961) p. 223.

    Google Scholar 

  244. P. Ramanlal and L. M. Sander, Phys. Rev. Lett. 54,1828 (1985).

    Article  ADS  Google Scholar 

  245. F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

    Article  ADS  Google Scholar 

  246. P. Meakin, J. Phys. A 18, L661 (1985).

    Article  ADS  Google Scholar 

  247. S. Liang and L. P. Kadanoff, Phys. Rev. A 31, 2628 (1985).

    Article  ADS  Google Scholar 

  248. P. Meakin, P. Ramanlal, L. M. Sander and R. C. Ball, Phys. Rev. A 34, 5091 (1986).

    Article  ADS  Google Scholar 

  249. P. Meakin, Phys. Rev. A 38, 994 (1988).

    Article  ADS  Google Scholar 

  250. M. Itoh, R. Sahara, M. Takahashi, X. Hu, K. Ohno and Y. Kawazoe, Phys. Rev. E 53, 148 (1996).

    Article  ADS  Google Scholar 

  251. M. Kardar, G. Parisi and Y. Zhang, Phys. Rev. Lett. 56, 889 (1986).

    Article  ADS  MATH  Google Scholar 

  252. C. T. Capraro and Y. Bar-Yam, Comput. Mater. Sci. 1, 169 (1993).

    Article  Google Scholar 

  253. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Article  ADS  Google Scholar 

  254. M. Kolb, R. Botet and R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Article  ADS  Google Scholar 

  255. R. Jullien and M. Kolb, J. Phys. A: Math Gen. 17, L639 (1984).

    Article  ADS  Google Scholar 

  256. Brown and Ball (1985) W. D. Brown and R. C. Ball, J. Phys. A: Math Gen. 18, L517 (1985).

    Google Scholar 

  257. F. Family, P. Meakin and T. Vicsek, J. Chem. Phys. 83, 4141 (1985).

    Article  ADS  Google Scholar 

  258. M. Kudoh, X. Hu, K. Ohno and Y. Kawazoe, J. Cryst. Growth 128, 1162 (1993).

    Article  ADS  Google Scholar 

  259. R. K. ILer, The Chemistry of Silica (Wiley, New York, 1979).

    Google Scholar 

  260. K. Ohno and Y. Kawazoe, Comput. Theor. Polymer Sci., to appear.

    Google Scholar 

  261. M. Mikami, Master Thesis, Tohoku University (1991).

    Google Scholar 

  262. C. Aubert and D. S. Cannel, Phys. Rev. Lett. 56, 738 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ohno, K., Esfarjani, K., Kawazoe, Y. (1999). Monte Carlo Methods. In: Computational Materials Science. Springer Series in Solid-State Sciences, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59859-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59859-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64155-8

  • Online ISBN: 978-3-642-59859-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics