Skip to main content

Axial durchströmte Turbinen

  • Chapter
Gasturbinen Handbuch

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 497 Accesses

Zusammenfassung

Axial durchströmte Turbinen sind die meist eingesetzten Turbinen Für kompresible Fluide. Sie treiben die meisten Gasturbineneinheiten—außer die Turbinen mit niedrigeren Leistungen—, und sie sind in den meisten Betriebsbereichen effektiver als radial eingeströmte Turbinen. Die axial durschströmte Turbine wird auch in Dampfturbinenkonatruktionen eingesetzt; jedoch gibt es einige signifikante Unterscheide zwischen den axial durchströmten Turbinenkonstruktionen für Gastrbinen und den Konstruktionen für Dampfturbinen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Evans, D.C.: Highly Loaded Multi-stage Fan Drive. Turbine-Velocity Diagram Study, NASA CR-1862 (1971)

    Google Scholar 

  2. Evans, D.C. and Wolfmeyer, G.W.: Highly Loaded Multi-stage Fan Drive. Turbine-Piain Blade Configuration. NASA CR-1964, NASA CR-1964, (1972)

    Google Scholar 

  3. Shepherd, D.G.:Principles of Turbomachinery. The Macmillan Company, New York 1956

    Google Scholar 

  4. Horlock, J.K.: Axial Flow Turbine. Butterworth and Company Ltd., London 1966

    Google Scholar 

  5. Whitney, W.J., Szanca, E.M., Moffitt, T.P., and Monroe, D.E.: Cold-Air Investigation of a Turbine for High-Temperature Engine Application, I-Turbine Design and Overall Stator Performance. NASA, TN D-3751 (1967)

    Google Scholar 

  6. Prust, H.W., Jr., Schum, H.J. and Behning, F.P.: Cold-Air Investigation of a Turbine for High-Temperature Engine Application. II-Detailed Analytical and Experimental Investigation of Stator Performance. NASA, TN D-4418 (1968)

    Google Scholar 

  7. Whitney, W.J., Szanca, E.M., Bider, B., and Monroe, D.E.: Cold-Air Investigation of a Turbine for High-Temperature Engine Application III-Overall Stage Performance. NASA, TN D-4389 (1968)

    Google Scholar 

  8. Whitney, W.J., Szanca, E.M., and Behning, F.P.: Cold-Air Investigation of a Turbine with Stator Blade Trailing Edge Coolant-Ejection. I-Overall Stator Performance. NASA, TM X-1901 (1969)

    Google Scholar 

  9. Prust, H.W., Jr., Behning, F.P., and Bider, B.: Cold-Air Investigation of a Turbine with Stator Blade Trailing Edge Coolant Ejection. II-Detailed Stator Performance. NASA, TM X-1963 (1970)

    Google Scholar 

  10. Szanca, E.M., Schum, H.J., and Prust, H.W., Jr.: Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades. I-Performance of Stator with Discrete Hole Blading. NASA, TM X-2094 (1970)

    Google Scholar 

  11. Prust, H.W., Jr., Schum, H.J., and Szanca, E.M.: Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades. I-Performance of Stator with Discrete Hole Blading. NASA, TX X-2094 (1970)

    Google Scholar 

  12. Szanca, E.M., Schum, H.J., and Behnong, F.P.: Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades. II-Stage Performance with Discrete Hole Stator Blades. NASA, TM X-2133 (1970)

    Google Scholar 

  13. Behning, F.P., Prust, H.W., Jr.; and Moffitt, T.P.: Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades. HI-Performance of Stator with Wire-Mesh Shell Blading. NASA, TM X-2166 (1971)

    Google Scholar 

  14. Behning, F.P., Schum, H.J., and Szanca, E.M.: Cold-Air Investigation of a Turbine with Transpiration-Cooled Stator Blades. IV-Stage Performance with Wire-Mesh Shell Blading. NASA, TM X-2176 (1971)

    Google Scholar 

  15. Moffitt, T.P., Prust, H.W., Jr., Szanca, E.M., and Schum, H.J.: Summary of Cold-Air Tests of a Single-Stage Turbine with Various Stator Cooling Techniques. NASA, TM X-52969 (1971)

    Google Scholar 

  16. Glassman, A.J., and Moffitt, T.P.: New Technology in Turbine Aerodynamics. Proceeding of the Ist Turbomachinery Symposium. Texas A&M University 1972, p. 105

    Google Scholar 

  17. Prust, H.W., Jr., and Helon, R.M.:Effect of Trailing Edge Geometry and Thickness on the Performance of Certain Turbine Stator Blading. NASA, TN D-6637 (1972)

    Google Scholar 

  18. Whitney, W.J.: Comparative Study of Mixed and Isolated Flow Methods for Cooled Turbine Performance Analysis. NASA, TM X-1572 (1968)

    Google Scholar 

  19. Whitney, W.J.: Analytical Investigation of the Effect of Cooling Air on Two-Stage Turbine Performance. NASA, TM X-1728 (1969)

    Google Scholar 

  20. Cohen, C.B. and Reshotko, E.: The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient. NACA, TR 1294 (1956)

    Google Scholar 

  21. Sasman, P.K.and Gresei, R.J.: Compressible Turbulent Boundary Layer with Pressure Gradients and Heat Transfer. AIAA J. Vol. 1, Jan. 1966, pp. 19–25

    Google Scholar 

  22. Balje, O.E.: Axial Cascade Technology and Application to Flow Path Designs. J. Eng. Power, ASME Transactions 90A (1968),pp.309–340

    Google Scholar 

  23. Balje, O.E. and Binsley, R.L.: Axial Turbine Performance Evaluation. J. Eng. Power, ASME Transactions, 90A (1960), pp. 217–232

    Google Scholar 

  24. Daily, J.W. and Nece, R.E.: Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks. J. Basic Eng., ASME Transaction 82D (1960), pp. 217–232

    Google Scholar 

  25. Mann, R.W. and Marston, C.A.: Friction Drag on Bladed Disks in Housings as a Function of Reynolds Number. Axial and Radial Clearance and Blade Aspect Ratio and Solidity. J. Basic Eng., ASME Transaction 83 D (1961), pp. 719–723

    Google Scholar 

  26. Thompson, W.E.:Aerodynamics of Turbines. Proceedings of the Ist Turbomachinery Symposium, Texas A&M University 1972, p. 90

    Google Scholar 

  27. Carter, A.F. and Lenherr, F.K.: Analysis of Geometry and Design Point Performance of Axial Flow Turbine Using Specified Meridional Velocity Gradients. NASA, CR-1456 (1969)

    Google Scholar 

  28. Carter, A.F., Platt, M., and Lenherr, F.K.: Analysis of Geometry and Design Point Performance of Axial Flow Turbines. Part I-Development of the Analysis Methods and the Loss Coefficient Correlation. NASA, CR-1181 (1968)

    Google Scholar 

  29. Brown, L.E.: Axial Flow Compressor and Turbine Loss Coefficients: A Comparison of Several Parameters. J. Eng. Power, ASME Transaction 94A (1972), pp. 193–201

    Google Scholar 

  30. Flagg, E.E.: Analytical Procedure and Computer Program for Determining the Off-Design Performance of Axial flow Turbines. NASA, CR-710 (1967)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg New York

About this chapter

Cite this chapter

Boyce, M.P. (1997). Axial durchströmte Turbinen. In: Gasturbinen Handbuch. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59841-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59841-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64145-9

  • Online ISBN: 978-3-642-59841-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics