Skip to main content
Book cover

Development pp 133–144Cite as

Root Development in Arabidopsis

  • Chapter
  • 664 Accesses

Abstract

The development of higher plants involves the formation of repeated structural units throughout the life of the organism. The formation of these structures from populations of stem cells, organogenesis, can be simplified into a number of subprocesses. Pattern formation can be considered to be the roughing out of discrete pattern elements within a population of cells. Morphogenesis includes the activities, such as cell division and expansion, that generate the final shape from these pattern elements. Defining the molecular bases of these activities using a combination of genetic, molecular and surgical approaches is the aim of studies of development in the Arabidopsis root. This chapter will describe experiments that provide insight into the nature of signals involved in cell and tissue patterning and the characterization of a small number of genes that are involved in the patterning process. The final section will deal with the development of lateral roots and how environmental factors such as NO\(\mathop 3\limits^ - \) availability, impingeupon the development of root architecture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benfey PN, Schiefelbein JW (1994) Getting to the root of plant development: genetics of Arabidopsis root formation. Trend Genet 10:84–88

    Article  CAS  Google Scholar 

  2. Dolan L. Scheres B (1998) Root pattern: shooting in the dark. Semin Cell Dev Biol 9:201–206

    Article  PubMed  CAS  Google Scholar 

  3. Wolpert L, Beddington R, Brockes J, Jessell T, Lawerence P, Meyerowitz E (1998) Principles of development. Current Biology Ltd, London, Oxford University Press, Oxford

    Google Scholar 

  4. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  5. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  6. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  7. Fujie M, Kuriowa H, Suzuki T, Kwano S, Kuriowa T (1993) Organelle DNA synthesis in the quiescent centre of Arabidopsis thaliana (Col). J Exp Bot 44:689–693

    Article  CAS  Google Scholar 

  8. Van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Determination of cell fate in the root meristem by directional signalling. Nature 378:62–65

    Article  PubMed  Google Scholar 

  9. Van den Berg C, Willemsen V, Hedricks G, Weisbeek P, Scheres B (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289

    Article  PubMed  Google Scholar 

  10. Van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B (1995) Determination of cell fate in the root meristem by directional signalling. Nature 378:62–65

    Article  PubMed  Google Scholar 

  11. Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  12. Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166:740–754

    Article  PubMed  CAS  Google Scholar 

  13. Berger F, Haseloff J, Schiefelbein J, Dolan L (1998) Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr Biol 8:421–430

    Article  PubMed  CAS  Google Scholar 

  14. Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aescbacher RA (1993) Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development 119:57–70

    PubMed  CAS  Google Scholar 

  15. Di Laurenzio L, Wysocka-Diller J, Malamy J, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  16. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994a) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  17. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P (1994) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  18. Di Laurenzio L, Wysocka-Diller J, Malamy J, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  19. Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B (1993) Cellular organization of the Arabidopsis thaliana root. Development 119:71–84

    PubMed  CAS  Google Scholar 

  20. Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C. Weisbeek P (1994a) Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120:2475–2487

    CAS  Google Scholar 

  21. Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G (1996) The Arabidopsis ATHB-10 (GLABRA2) is a HD-ZIP protein required for the repression of ectopic root hair formation. Plant J 10:393–402

    Article  PubMed  CAS  Google Scholar 

  22. Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Roberts K (1994) Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120:2465–2474

    CAS  Google Scholar 

  23. Masucci JD, Schiefelbein JW (1994) The rhd6 mutation of Arabidopsis thaliana alters root-hair initiation through an auxin- and ethylene-associated process. Plant Physiol 106:1335–1346

    PubMed  CAS  Google Scholar 

  24. Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopisis thaliana. Development 122:1253–1260

    PubMed  CAS  Google Scholar 

  25. Laskowski MJ, Williams MJ, Nussbaum C, Sussex I (1995) Formation of lateral root meristems is a twostage process. Development 121:3303–3310

    PubMed  CAS  Google Scholar 

  26. Malamy JE, Benfey P (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    PubMed  CAS  Google Scholar 

  27. Przemeck GKH, Mattson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROUS in vascular development and plant cell axialization. Planta 200:229–237

    Article  PubMed  CAS  Google Scholar 

  28. Topping JF, Lindsey K (1997) Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9:1713–1725

    Article  PubMed  CAS  Google Scholar 

  29. Boerjan W, Cervera MT, Dekarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superoot, a recessive mutation in Arabidopsis confers auxin overproduction. Plant Cell 7:1405–1419

    Article  PubMed  CAS  Google Scholar 

  30. Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    Article  PubMed  CAS  Google Scholar 

  31. Hobbie L, Estelle MA (1995) The axr4 auxin resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J 7:211–220

    Article  PubMed  CAS  Google Scholar 

  32. King JJ, Stimart DP, Fisher RH, Bleecker AB (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7:2023–2037

    Article  PubMed  CAS  Google Scholar 

  33. Klee JH, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefasciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1:86–96

    Article  CAS  Google Scholar 

  34. Leyser HMO, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    Article  PubMed  CAS  Google Scholar 

  35. Ruegger M, Dewey E, Hobbie L, Brown D, Bernaasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757

    Article  PubMed  CAS  Google Scholar 

  36. Timpte C, Lincoln, Pickett FB, Turner J, Estelle MA (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8:561–569

    Article  PubMed  CAS  Google Scholar 

  37. Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. J Exp Bot 24:1189–1202

    Article  CAS  Google Scholar 

  38. Zhang H, Forde BG (1997)An Arabidopsis MADS box gene tha controols nutrient-induced changes in root architecture Science 279:407–409

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Dolan, L. (1999). Root Development in Arabidopsis . In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics