Skip to main content

Cell-Cell Communication in Dictyostelium

  • Chapter
  • 645 Accesses

Abstract

Dictyostelium discoideum has become an extensively studied model for cellular and developmental processes in higher organisms. It is attractive for these purposes because in its cell biology and certain aspects of its development it is remarkably similar to higher eukaryotes, but it can be analyzed using genetic techniques that are readily applicable only to lower eukaryotes. Dictyostelium cells inhabit the surface layers of soil and leaf litter in forests. They ingest bacteria and yeasts and, when food is plentiful, they divide with a doubling time of approximately 4 h. Cells monitor the presence of both their food source and the neighbouring Dictyostelium cells and, when the ratio of these two reaches a critical level, they opt for development. The developing cells pass through sequential waves of gene expression, regulated by extracellular signalling molecules, to yield a mass of spores supported by a stalk (Fig.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raper KB (1940) Pseudoplasmodium formation and organization in Dictyostelium discoideum. J Elisha Mitchell Sci Soc 56:241–282

    Google Scholar 

  2. Loomis WF (1975) Dictyostelium discoideum. A developmental system. Academic Press, New York

    Google Scholar 

  3. Maeda Y, Inouye K, Takeuchi I (1997) Dictyostelium, a model system for cell and developmental biology. Universal Academy Press, Tokyo

    Google Scholar 

  4. Clarke M, Gomer RH (1995) PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium. Experientia 51:1124–1134

    Article  PubMed  CAS  Google Scholar 

  5. Van Haastert PJM, Bishop JD, Gomer RH (1996) The cell density factor CMF regulates the chemoattractant receptor cARl in Dictyostelium. J Cell Biol 134:1543–1549

    Article  PubMed  Google Scholar 

  6. Verkerke-van Wijk I, Schaap P (1997) cAMP, a signal for survival. In: Maeda Y, Inouye K, Takeuchi I (eds) Dictyostelium a model system for cell and developmental biology. Universal Academy Press, Tokyo

    Google Scholar 

  7. Tomchik KJ, Devreotes PN (1981) Adenosine 3’, 5’-monophosphate waves in Dictyostelium discoideum: a demonstration by isotope dilution-fluorography. Science 212:443–446

    Article  PubMed  CAS  Google Scholar 

  8. Parent CA, Devreotes PN (1996) Molecular genetics of signal transduction in Dictyostelium. Annu Rev Biochem 65:411–440

    Article  PubMed  CAS  Google Scholar 

  9. Snaar-Jagalska BE, Van Haastert PJM (1990) Pertussis toxin inhibits cAMP-induced desensitization of adenylate cyclase in Dictyostelium discoideum. Mol Cell Biochem 92:177–189

    PubMed  CAS  Google Scholar 

  10. Newell PC (1995) Signal transduction and motility of Dictyostelium. Biosci Rep 15:445–462

    Article  PubMed  CAS  Google Scholar 

  11. Valkema R, Van Haastert PJM (1994) A model for cAMP-mediated cGMP response in Dictyostelium discoideum. Mol Biol Cell 5:575–585

    PubMed  CAS  Google Scholar 

  12. Kuwayama H, Van Haastert PJM (1996) Regulation of guanylyl cyclase by a cGMP-binding protein during chemotaxis in Dictyostelium discoideum. J Biol Chem 271:23718–23724

    Article  PubMed  CAS  Google Scholar 

  13. Siegert F, Weijer CJ (1995) Spiral and concentric waves organize multicellular Dictyostelium mounds. Curr Biol 5:937–943

    Article  PubMed  CAS  Google Scholar 

  14. Firtel RA (1995) Integration of signalling information in controlling cell-fate decisions in Dictyostelium. Genes Dev 9:1427–1444

    Article  PubMed  CAS  Google Scholar 

  15. Schnitzler GR, Briscoe C, Brown JM, Firtel RA (1995) Serpentine cAMP receptors may act through a G protein-independent pathway to induce postaggregative development in Dictyostelium. Cell 81:737–745

    Article  PubMed  CAS  Google Scholar 

  16. Jin T, Soede RDM, Liu J, Kimmel AR, Devreotes PN, Schaap P (1998) Temperature-sensitive G/? mutants discriminate between G protein-dependent and -independent signaling mediated by serpentine receptors. EMBOJ 17:5076–5084

    Article  CAS  Google Scholar 

  17. Harwood AJ, Plyte SE, Woodgett J, Strutt H, Kay RR (1995) Glycogen synthase kinase 3 regulates cell fate in Dictyostelium. Cell 80:139–148

    Article  PubMed  CAS  Google Scholar 

  18. Perrimon N (1996) Serpentine proteins slither into the wingless and hedgehog field. Cell 86:513–516

    Article  PubMed  CAS  Google Scholar 

  19. Williams JG (1988) The role of diffusible molecules in regulating the cellular differentiation of Dictyostelium discoideum. Development 103:1–16

    PubMed  CAS  Google Scholar 

  20. Kay RR (1997) DIF signalling. In: Maeda Y, Inouye K, Takeuchi I (eds) Dictyostelium a model system for cell and developmental biology. Universal Academy Press, Tokyo, pp 279–289

    Google Scholar 

  21. Kawata T, Shevchenko A, Fukuzawa M, Jermyn KA, Totty NF, Zhukovskaya NV, Sterling A, Mann M, Williams JG (1997) SH2 signalling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium. Cell 89:909–916

    Article  PubMed  CAS  Google Scholar 

  22. Schaap P, Nebl T, Fischer PR (1996) A slow sustained increase in cytosolic Ca2+ levels mediates stalk gene induction by differentiation inducing factor in Dictyostelium. EMBOJ 15:5177–5183

    CAS  Google Scholar 

  23. Williams JG, Morrison A(1994) Prestalk cell differentiation and movement during the morphogenesis of Dictyostelium. Prog Nucleic Acids Res Mol Biol 47:1–27

    Article  CAS  Google Scholar 

  24. Williams JG (1997) Prestalk and stalk cell heterogeneity in Dictyostelium. In: Maeda Y, Inouye K, Takeuchi I (eds) Dictyostelium, a model system for cell and development biology. Universal Academy Press, Tokyo, pp 293-301

    Google Scholar 

  25. Bonner JT, Chiang A, Lee J, Suthers HB (1988) The possible role of ammonia in phototaxis of migrating slugs of Dictyostelium discoideum. Proc Natl Acad Sci USA 85:3885–3887

    Article  PubMed  CAS  Google Scholar 

  26. Gross JD, Bradbury J, Kay RR, Peacey MJ (1983) Intracellular pH and the control of cell differentiation in Dictyostelium. Nature 303:244–245

    Article  PubMed  CAS  Google Scholar 

  27. Schindler J, Sussman M (1977) Ammonia determines the choice of morphogenetic pathways in Dictyostelium discoideum. J Mol Biol 116:161–169

    Article  PubMed  CAS  Google Scholar 

  28. Wang M, Schaap P (1989) Ammonia depletion and DIF trigger stalk cell differentiation in Dictyostelium discoideum slugs. Development 105:569–574

    CAS  Google Scholar 

  29. Davies L, Satre M, Martin JB, Gross JD (1993) The target of ammonia action in Dictyostelium. Cell 75:321–327

    Article  PubMed  CAS  Google Scholar 

  30. Reymond P, Schaap P, Veron M, Williams JG (1995) Dual role of cAMP during Dictyostelium development. Experientia 51:1166–1174

    Article  PubMed  CAS  Google Scholar 

  31. Harwood AJ, Hopper NA, Simon MN, Driscoll DM, Veron M, Williams JG (1992) Culmination in Dictyostelium is regulated by the cAMP-dependent protein kinase. Cell 69:615–624

    Article  PubMed  CAS  Google Scholar 

  32. Shaulsky G, Escalante R, Loomis WF (1996) Developmental signal transduction pathways uncovered by genetic supressors. Proc Natl Acad Sci USA 93:15260–15265

    Article  PubMed  CAS  Google Scholar 

  33. Thomason PA, Traynor D, Cavet G, Chang W-T, Harwood AJ, Kay RR (1998) An intersection of the cAMP/ PKA and two component signal transduction systems in Dictyostelium. EMBOJ 17:2838–2845

    Article  CAS  Google Scholar 

  34. Cotter DA, Sands TW, Virdy KJ, North MJ, Klein G, Satre M (1992) Patterning of development in Dictyostelium discoideum: factors regulating growth, differentiation, spore dormancy, and germination. Biochem Cell Biol 70:892–919

    Article  PubMed  CAS  Google Scholar 

  35. Van Es S, Virdy KJ, Pitt GS, Meima M, Sands TW, Devreotes PN, Cotter DA, Schaap P (1996) Adenylyl cyclase G, an osmosensor controlling germination of Dictyostelium spores. J Biol Chem 271:23623–23625

    Article  PubMed  Google Scholar 

  36. Yamada Y, Williams JG, Okamoto K (1997) Identification and characterisation of a Dictyostelium factor that acts synergistically with DIF to induce terminal stalk cell differentiation. Dev Biol 184:296–302

    Article  PubMed  CAS  Google Scholar 

  37. Anjard C, van Bemmelen M, Reymond CD, Veron M (1997) A new spore differentiation factor (SDF) secreted by Dictyostelium cells is phosphorylated by the cAMP dependent protein kinase. Differentiation 62:43–49.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Schaap, P., Williams, J. (1999). Cell-Cell Communication in Dictyostelium . In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics