Skip to main content

Polarity in Biological Systems

  • Chapter
Development

Abstract

Polarity is a fundamental property of biological systems. In the biological context, we define polarity as the persistent asymmetrical and ordered distribution of structures along an axis. Polarity is all pervading. Polarity allows the development of functional complexity, not only in multicellular organisms, but also in cells and in subcellular structures. Polar organization allows regions having different functions to be physically related in a manner appropriate for integration of function within the whole organism. Increased functional complexity is seen as being of adaptive value; for example, complexity extends the range of an organism by increasing its tolerance of diverse environments. Most of the preceding pages deal with some aspect of development involving polarity. In this chapter, we will examine the problems of programming polarity during development and its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell 3rd edn. Garland Publishing, New York

    Google Scholar 

  2. Barlow PW (ed) (1989) Differential growth in plants. Pergamon Press, Oxford

    Google Scholar 

  3. Finch JT, Klug A (1965) The structure of viruses of the papilloma-polyoma type. III. Structure of rabbit papilloma virus. J Mol Biol 13:1–12

    Article  PubMed  CAS  Google Scholar 

  4. Harold FM (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54:381–431

    PubMed  CAS  Google Scholar 

  5. Errington J (1992) Bacillus subtilis sporulation: a paradigm for the spatial and temporal control of gene expression. In: Russo VEA, Brody S, Cove D, Ottolenghi S (eds) Development. The molecular genetic approach. Springer, Berlin Heidelberg New York, pp 28–44

    Google Scholar 

  6. Antzak M, Blerkom V (1997) Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod 3:1067–1086

    Article  Google Scholar 

  7. Edwards RG, Beard HK (1997) Oocyte polarity and cell determination in early mammalian embryos. Mol Human Reprod 3:863–905

    Article  CAS  Google Scholar 

  8. Goldstein B, Hird SN (1996) Specification of anteroposterior axis in Caenorhabditis elegans. Development 122:1467–1474

    PubMed  CAS  Google Scholar 

  9. Gonczy P, Hyman AA (1996) Cortical domains and the mechanisms of asymmetrical cell division. Trends Cell Biol 6:382–387

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez-Reyes A, Elliot H, St Johnstone D (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375:654–658

    Article  PubMed  CAS  Google Scholar 

  11. Hyman AA (1989) Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J Cell Biol 109:1185–1193

    Article  PubMed  CAS  Google Scholar 

  12. Priess JR, Hirsh DI (1986) Caenorhabditis elegans morphogenesis: The role of the cytoskeleton in elongation of the embryo. Dev Biol 117:156–173

    Article  PubMed  CAS  Google Scholar 

  13. Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109:1–9

    PubMed  CAS  Google Scholar 

  14. Mochizuki T, Saijoh Y, Tsuchiya K, Shirayoshi Y, Takai S, Taya C, Yonekawa H, Yamada K, Nihei H, Nakatsuji N, Overbeek PA, Hamada H, Yokoyama T (1998) Cloning of inv, a gene that controls left/right asymmetry and kidney development. Nature 395:177–181

    Article  PubMed  CAS  Google Scholar 

  15. Supp DM, Brueckner M, Potter SS (1998) Handed asymmetry in the mouse: understanding how things go right (or left) by studying how they go wrong. Cell Dev Biol 9:77–87

    Article  CAS  Google Scholar 

  16. Yokoyama T, Copeland NG, Jenkins NA, Montgomery CA, Elder FFB, Overbeek PA (1993) Reversal of left-right asymmetry: A situs inversus mutation. Science 260:679–682

    Article  PubMed  CAS  Google Scholar 

  17. Cove DJ, Quatrano RS, Hartmann E (1996) The alignment of the axis of asymmetry in regenerating protoplasts of the moss, Ceratodon purpureus, is determined independently of axis polarity. Development 122:371–379

    PubMed  CAS  Google Scholar 

  18. Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1995) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799

    Article  Google Scholar 

  19. Chant J (1996) Septin scaffolds and cleavage planes in Saccharomyces. Cell 84:187–190

    Article  PubMed  CAS  Google Scholar 

  20. Chant J, Stowers L (1995) GTPase cascades choreographing cellular behaviour: movement, morphogenesis and more. Cell 81:1–4

    Article  PubMed  CAS  Google Scholar 

  21. Roemer T, Vallier LG, Snyder M (1996) Selection of polarised growth sites in yeast. Trends Cell Biol 6:434–441

    Article  PubMed  CAS  Google Scholar 

  22. Campuzano V, Galland P, Alvarez MI, Eslava AP (1996) Autochemotropism and ethylene response in Phycomyces. Photochem Photobiol 63:686–694

    Article  PubMed  CAS  Google Scholar 

  23. Fowler JE, Quatrano RS (1997) Plant cell morphogenesis: plasma membrane interactions with the cytoskeleton and cell wall. Annu Rev Cell Dev Biol 13:697–743

    Article  PubMed  CAS  Google Scholar 

  24. Hart JW (1990) Plant tropisms and other growth movements. Unwin Hyman, London

    Google Scholar 

  25. Harvey AW (1998) Genes for asymmetry easily overruled. Nature 392:345–346

    Article  CAS  Google Scholar 

  26. Hulskamp M, Folkers U, Grini PE (1998) Cell morphogenesis in Arabidopsis. BioEssays 20:20–29

    Article  PubMed  CAS  Google Scholar 

  27. Knight CD, Futers TS, Cove DJ (1991) Genetic analysis of a mutant class of Physcomitrella patens in which the polarity of gravitropism is reversed. Mol Gen Genet 230:12–16

    Article  PubMed  CAS  Google Scholar 

  28. Lamparter T, Esch H, Cove DJ, Hughes J, Hartmann E (1996) Aphotropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ 19:560–568

    Article  Google Scholar 

  29. Quatrano RS (1997) Cortical asymmetries direct the establishment of cell polarity and the plane of cell division in Fucus embryos. In: Stillman B (ed) Pattern formation during development, vol. LXII. Cold Spring Harbor Symposium on Quantitative Biololgy, Cold Spring Harbor, pp 65–70

    Google Scholar 

  30. Quatrano RS, Shaw S (1997) Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci 2:15–21

    Article  Google Scholar 

  31. Wagner TA, Cove DJ, Sack FD (1997) A positively gravitropic mutant mirrors the wild-type protonemal response in the moss, Ceratodon purpureus. Planta 202:149–154

    Article  PubMed  CAS  Google Scholar 

  32. Watts HJ, Very AA, Perera THS, Davies JM, Gow NAR (1998) Thigmotropism and stretch-activated channels in the pathogenic fungus, Candida albicans. Microbiology 144:689–695

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Cove, D.J., Hope, I.A., Quatrano, R.S. (1999). Polarity in Biological Systems. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics