Skip to main content

Circadian Timing in Animals

  • Chapter
Development

Abstract

Our planet turns around its own axis once a day and around the sun once a year. As a consequence, light and dark phases alternate once a day, and, except in the equatorial latitudes, their relative lengths change during the year. Many organisms have adapted their physiology and behavior of these varying geophysical circum stances, restricting their activity periods to a certain time window during the 24-h day. Humans, for example, are active during the day and sleep through part of the night. The converse is true for many rodents, such as rats and mice. Green plants can capture solar energy for photosynthesis only during the light phase, converting some of the captured energy to chemical energy in the form of starch granules, which will provide the energy for basic metabolism during the dark phase. One might imagine that the presence or absence of light would suffice as timing cues dictating the activity periods of an organism. However, the story happens to be more sophisticated. Many organisms can actually anticipate the time of sunrise or sunset of the next day with astounding precision. To do so, they require a device that not only can measure time but also can respond to seasonal changes in the duration of the light and dark phases (photoperiod). This timing system is called the circadian clock. Circadian is derived from the Latin words circa diem meaning about a day. Circadian clocks are widespread among the animal and plant kingdoms, and have even been found in prokaryotes. This suggests that, during evolution, temporal anticipation has been advantageous over merely reacting to the photoperiod.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dunlap JC (1996) Genetics and molcular analysis of circadian rhythms. Annu Rev Genet 30:579–601

    Article  PubMed  CAS  Google Scholar 

  2. Hastings M (1994) Circadian rhythms. What makes the clock tick?Curr Biol 4:720–723

    Article  PubMed  CAS  Google Scholar 

  3. Hastings MH (1997) Circadian clocks. Curr Biol 7:670–672

    Article  Google Scholar 

  4. Rosbash M (1995) Molecular control of circadian rhythms. Curr Opin Genet Dev 5:662–668

    Article  PubMed  CAS  Google Scholar 

  5. Campbell SS, Murphy PJ (1998) Extraocular circadian phototransduction in humans. Science 279:396–369

    Article  PubMed  CAS  Google Scholar 

  6. Johnson CH, Golden SS, Ishiura M, Kondo T (1996) Circadian clocks in prokaryotes. Mol Microbiol 21:5–11

    Article  PubMed  CAS  Google Scholar 

  7. Benzer S (1971) From the gene to behavior. Jama 218:1015–1022

    Article  PubMed  CAS  Google Scholar 

  8. Rosato E, Piccin A, Kyriacou CP (1997) Circadian rhythms: from behaviour to molecules. Bioessays 19:1075–1082

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi JS (1995) Molecular neurobiology and genetics of circadian rhythms in mammals. Annu Rev Neurosci 18:531–553

    Article  PubMed  CAS  Google Scholar 

  10. Alleva JJ (1989) How hamsters keep time: the 6 pm to 6 am light-sensitive period. J Pineal Res 7:265–280

    Article  PubMed  CAS  Google Scholar 

  11. Deacon S, Arendt J (1996) Adapting to phase shifts, I. An experimental model for jet lag and shift work. Physiol Behav 59:665–673

    Article  PubMed  CAS  Google Scholar 

  12. Matsumoto A, Motoshige T, Murata T, Tomioka K, Tanimura T, Chiba Y (1994) Chronobiological analysis of a new clock mutant, Toki, in Drosophila melanogaster. J Neurogenet 9:141–155

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitive of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308:186–188

    Article  PubMed  CAS  Google Scholar 

  14. Ewer J, Frisch B, Hamblen-Coyle MJ, Rosbash M, Hall JC (1992) Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells’ influence on circadian behavioral rhythms. J Neurosci 12:3321–3349

    PubMed  CAS  Google Scholar 

  15. Takahashi JS (1993) Circadian-clock regulation of gene expression. Curr Opin Genet Dev 3:301–309

    Article  PubMed  CAS  Google Scholar 

  16. Armstrong SM(1989) Melatonin and circadian control in mammals. Experientia 45:932–938

    Article  PubMed  CAS  Google Scholar 

  17. Cassone VM, Warren WS, Brooks DS, Lu J (1993) Melatonin, the pineal gland, and circadian rhythms. J Biol Rhythms 8:73–81

    Google Scholar 

  18. Chabot CC, Menaker M (1992) Circadian feeding and locomotor rhythms in pigeons and house sparrows. J Biol Rhythms 7:287–299

    Article  PubMed  CAS  Google Scholar 

  19. Foa A, Janik D, Minutini L (1992) Circadian rhythms of plasma melatonin in the ruin lizard Podarcis sicula: effects of pinealectomy. J Pineal Res 12:109–113

    Article  PubMed  CAS  Google Scholar 

  20. Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1996) Transcriptional control of circadian hormone synthesis via the CREM feedback loop. Proc Natl Acad Sci USA 93:14140–14145

    Article  PubMed  CAS  Google Scholar 

  21. Foulkes NS, Borjigin J, Snyder SH, Sassone-Corsi P (1997) Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Trends Neurosci 20:487–492

    Article  PubMed  CAS  Google Scholar 

  22. Gwinner E, Hau M, Heigl S (1997) Melatonin: generation and modulation of avian circadian rhythms. Brain Res Bull 44:439–444

    Article  PubMed  CAS  Google Scholar 

  23. Heigl S, Gwinner E (1995) Synchronization of circadian rhythms of house sparrows by oral melatonin: effects of changing period. J Biol Rhythms 10:225–233

    Article  PubMed  CAS  Google Scholar 

  24. Janik DS, Menaker M (1990) Circadian locomotor rhythms in the desert iguana. I. The role of the eyes and the pineal. J Comp Physiol A 166:803–810

    PubMed  CAS  Google Scholar 

  25. Klein DC, Coon SL, Roseboom PH, Weller JL, Bernard M, Gastel JA, Zatz M, Luvone PM, Rodriguez IR, Begay V, Falcon J, Cahill GM, Cassone VM, Baler R (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–357

    PubMed  CAS  Google Scholar 

  26. Moore RY (1996) Neural control of the pineal gland. Behav Brain Res 73:125–130

    Article  PubMed  CAS  Google Scholar 

  27. Redman JR (1997) Circadian entrainment and phase shifting in mammals with melatonin. J Biol Rhythms 12:581–587

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi JS, Menaker M (1982) Role of the suprachiasmatic nuclei in the circadian system of the house sparrow, Passer domesticus. J Neurosci 2:815–828

    PubMed  CAS  Google Scholar 

  29. Tosini G, Menaker M (1998) Multioscillatory circadian organization in a vertebrate, Iguana iguana. J Neurosci 18:1105–1114

    PubMed  CAS  Google Scholar 

  30. Weaver DR, Reppert SM (1996) The Mella melatonin receptor gene is expressed in human suprachiasmatic nuclei. Neuroreport 8:109–112

    Article  PubMed  CAS  Google Scholar 

  31. Hastings MH (1997) Central clocking. Trends Neurosci 20:459–464

    Article  PubMed  CAS  Google Scholar 

  32. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978

    Article  PubMed  CAS  Google Scholar 

  33. Liu C, Weaver DR, Strogatz SH, Reppert SM (1997) Cellular construction of a circadian clock: period determination in the suprachiasmatic nuclei. Cell 91:855–860

    Article  PubMed  CAS  Google Scholar 

  34. Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila [see comments]. Science 278:1632–1635

    Article  PubMed  CAS  Google Scholar 

  35. Robertson LM, Takahashi JS (1988) Circadian clock in cell culture: II. In vitro photic entrainment of melatonin oscillation from dissociated chick pineal cells. J Neurosci 8:22–30

    PubMed  CAS  Google Scholar 

  36. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706

    Article  PubMed  CAS  Google Scholar 

  37. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA 68:2112–2216

    Article  PubMed  CAS  Google Scholar 

  38. Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241-: 1225–1227

    Article  Google Scholar 

  39. Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263:1603–1606

    Article  PubMed  CAS  Google Scholar 

  40. Shen H, Watanabe M, Tomasiewicz H, Rutishauser U, Magnuson T, Glass JD (1997) Role of neural cell adhesion molecule and polysialic acid in mouse circadian clock function. J Neurosci 17:5221–5229

    PubMed  CAS  Google Scholar 

  41. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725

    Article  PubMed  CAS  Google Scholar 

  42. Allada R, White NE, So WV, Hall JC, Rosbash M (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804

    Article  PubMed  CAS  Google Scholar 

  43. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TDL, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–1603

    Article  PubMed  CAS  Google Scholar 

  44. Edery I, Rutila JE, Rosbash M (1994) Phase shifting of the circadian clock by induction of the Drosophila period protein. Science 263:237–240

    Article  PubMed  CAS  Google Scholar 

  45. Robash M, Allada R, Dembinska M, Guo WQ, Le M, Marrus S, Qian Z, Rutila J, Yaglom J, Zeng H (1996) A Drosophila circadian clock. Cold Spring Harbor Symp Quant Biol 61:265–278

    Google Scholar 

  46. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–814

    Article  PubMed  CAS  Google Scholar 

  47. Rutila JE, Zeng H, Le M, Curtin KD, Hall JC, Rosbash M (1996) The timSL mutant of the Drosophila rhythm gene timeless manifests allele-specific interactions with period gene mutants. Neuron 17:921–929

    Article  PubMed  CAS  Google Scholar 

  48. Sauman I, Reppert SM (1996) Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron 17:889–900

    Article  PubMed  CAS  Google Scholar 

  49. Young MW, Wager-Smith K, Vosshall L, Saez L, Myers MP(1996) Molecular anatomy of a light-sensitive circadian pacemaker in Drosophila. Cold Spring Harbor Symp Quant Biol 61:279–284

    PubMed  CAS  Google Scholar 

  50. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mperl and mper2, to light. Cell 91:1055–1064

    Article  PubMed  CAS  Google Scholar 

  51. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS, King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue Postitional cloning of tile mouse circadian clock gene. Cell 89:655–667

    Article  PubMed  CAS  Google Scholar 

  52. Florez JC, Takahashi JS (1995) The circadian clock: from molecules to behaviour. Ann Med 27:481–490

    PubMed  CAS  Google Scholar 

  53. King DP, Takanashi JS (1996) Forward genetic approaches to circadian clocks in mice. Cold Spring Harbor Symp Quant Biol 61:295–302

    PubMed  CAS  Google Scholar 

  54. King DP, Zaho Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89:641–653

    Article  PubMed  CAS  Google Scholar 

  55. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569

    Article  PubMed  CAS  Google Scholar 

  56. Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP 3 forms transcriptionally attive complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479

    Article  PubMed  CAS  Google Scholar 

  57. Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227

    Article  PubMed  CAS  Google Scholar 

  58. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr., Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269

    Article  PubMed  CAS  Google Scholar 

  59. Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H (1997) Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPerl transcript. Cell 91:1043–1053

    Article  PubMed  CAS  Google Scholar 

  60. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, Lee CC (1997) RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90:1003–1011

    Article  PubMed  CAS  Google Scholar 

  61. Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, Hirose M, Sakaki Y (1997) Circadian oscillation of a mammalian hbmologue of the Drosophila period gene. Nature 389:512–516

    Article  PubMed  CAS  Google Scholar 

  62. Zylka MJ, Shearman LP, Weaver DR, Reppert SM (1998) Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110

    Article  PubMed  CAS  Google Scholar 

  63. Bjorkhem I, Lurid E, Rudling M (1997) Coordinate regulation of cholesterol 7 alpha-hydroxylase and HMGCoA reductase in the liver. Subcell Biochem 28:23–55

    Article  PubMed  CAS  Google Scholar 

  64. Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin VI antagonist. J Neurosci 16:5555–5565

    PubMed  CAS  Google Scholar 

  65. Lemmer B (1995) Clinical chronopharmacology: the importance of time in drug treatment. Ciba Found Symp 183:235–247

    PubMed  CAS  Google Scholar 

  66. Portaluppi F, Vergnani L, Manfredini R, Fersini C (1996) Endocrine mechnisms of blood pressure rhythms. Ann NY Acad Sci 783:113–131

    Article  PubMed  CAS  Google Scholar 

  67. Sensi S, Pace Palitti V, Guagnano MT (1993) Chronobiology in endocrinology. Ann 1st Super Sanita 29: 613–631

    CAS  Google Scholar 

  68. Uchiyama Y (1990) Rhythms in morphology and function of hepatocytes. J Gastroenterol Hepatol 5:321–333

    Article  PubMed  CAS  Google Scholar 

  69. Vrang N, Mikkelsen JD, Larsen PJ(1997) Direct link from the suprachiasmatic nucleus to hypothalamic neurons projecting to the spinal cord: a combined tracing study using cholera toxin subunit B and Phaseolus vw/gflns-leucoagglutinin. Brain Res Bull 44:671–680

    Article  PubMed  CAS  Google Scholar 

  70. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    Article  PubMed  CAS  Google Scholar 

  71. Falvey E, Fleury-Olela F, Schibler U (1995) The rat hepatic leukemia factor (HLF) gene encodes two transcriptional activators with distinct circadian rhythms, tissue distributions and target preferences. EMBOJ 14:4307–4317

    CAS  Google Scholar 

  72. Fonjallaz P, Ossipow V, Wanner G, Schibler U (1996) The two PAR leucine zipper proteins, TEF and DBP, display similar circadian and tissue-specific expression, but have different target promoter preferences. EMBOJ 15:351–362

    CAS  Google Scholar 

  73. Lavery DJ, Schibler U (1993) Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP. Genes Dev 7:1871–1884

    Article  PubMed  CAS  Google Scholar 

  74. Wang SL, Du EZ, Martin TD, Davis RA (1997) Coordinate regulation of lipogenesis, the assembly and secretion or apolipoprotein B-containing lipoproteins by sterol response element binding protein 1. J Biol Chem 272:19351–19358

    Article  PubMed  CAS  Google Scholar 

  75. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  PubMed  CAS  Google Scholar 

  76. Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ (1998) A screen for genes induced in the suprachiasmatic nucleus by light. Science 279:1544–1547

    Article  PubMed  CAS  Google Scholar 

  77. Levi F (1996) Chronotherapy for gastrointestinal cancers. Curr Opin Oncol 8:334–341

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Schibler, U., Lavery, D.J. (1999). Circadian Timing in Animals. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics