Skip to main content
Book cover

Development pp 407–419Cite as

X-Chromosome Inactivation

  • Chapter
  • 651 Accesses

Abstract

We have known for the greater part of the 20th century that mammalian females and males differ in both number and kind of sex chromosomes. While females have two X-chromosomes (XX), males have one X- and one Y-chromosome (XY). Both the X and Y carry genes that enhance female and male reproductive function, respectively. Because the Y-chromosome is relatively small and carries only a few genes, this sex chromosome difference means that females essentially have double the number of sex-chromosome genes compared to males. Yet, biochemical evidence indicates that this difference in chromosome number does not result in sex-specific differences in the total amount of X-encoded RNAs or proteins. In other words, female cells with two copies of every X-linked gene synthesized the same amount of protein products as males cells with half the number of genes. For years, this equation puzzled biologists. Clearly, some form of dosage compensation akin to those found in other sexual organisms must exist in mammals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676–677

    Article  PubMed  CAS  Google Scholar 

  2. Barr ML, Carr DH (1962) Correlations between sex chromatin and sex chromosomes. Acta Cytol 6:34–45

    PubMed  CAS  Google Scholar 

  3. Deeb SS, Lindsey DT, Hibiya Y et al. (1992) Genotypephenotype relationships in human red-green colorvision defects: molecular and psychophysical studies. Am J Hum Genet 51:687–698

    PubMed  CAS  Google Scholar 

  4. Graves JAM, Gartler SM (1986) Mammalian X chromosome inactivation: testing the hypothesis of transcriptional control. Somat Cell Mol Genet 12:275–280

    Article  PubMed  CAS  Google Scholar 

  5. Kelley RL, Kuroda MI (1995) Equality of X chromosomes. Science 270:1607–1610

    Article  PubMed  CAS  Google Scholar 

  6. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372–373

    Article  PubMed  CAS  Google Scholar 

  7. Lyon MF (1962) Sex chromatin and gene action in the mammalian X-chromosome. Am J Hum Genet 14:135–148

    PubMed  CAS  Google Scholar 

  8. Parkhurst SM, Meneely PM (1994) Sex determination and dosage compensation: lessons from flies and worms. Science 264:924–932

    Article  PubMed  CAS  Google Scholar 

  9. Takagi N, Sasaki M (1975) Preferential inactivation of the paternally derived X-chromosome in the extraembryonic membranes of the mouse. Nature 256:640–642

    Article  PubMed  CAS  Google Scholar 

  10. Epstein C, Smith S, Travis B, Tucker G (1978) Both X-chromosomes function before visible X-chromosome inactivation in female mouse embryos. Nature 274:500–503

    Article  PubMed  CAS  Google Scholar 

  11. Lee JT, Jaenisch R (1997) The (epi)genetic control of mammalian X-chromosome inactivation. Curr Opin Genet Dev 7:274–280

    Article  PubMed  CAS  Google Scholar 

  12. Monk M, Harper MI (1979) Sequential X chromosome inactivation coupled with cellular differentiation in early mouse embryos. Nature 281:311–313

    Article  PubMed  CAS  Google Scholar 

  13. Rastan S (1982) Timing of X-chromosome inactivation in postimplantation mouse embryos. J Embryol Exp Morphol 71:11–24

    PubMed  CAS  Google Scholar 

  14. Tagaki N, Abe K (1990) Detrimental effects of two active X chromosomes on early mouse development. Development 109:189–201

    Google Scholar 

  15. Amrein H, Axel R (1997) Genes expressed in neurons of adult male Drosophila. Cell 88:459–469

    Article  PubMed  CAS  Google Scholar 

  16. Barr ML, Carr DH (1962) Correlations between sex chromatin and sex chromosomes. Acta Cytol 6:34–45

    PubMed  CAS  Google Scholar 

  17. Belyaev ND, Keohane AM, Turner BM (1996) Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum Genet 97:573–578

    Article  PubMed  CAS  Google Scholar 

  18. Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134

    Article  PubMed  CAS  Google Scholar 

  19. Chuang P-T, Albertson DG, Meyer BJ (1994) DPY-27:A chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–474

    Article  PubMed  CAS  Google Scholar 

  20. Clemson CM, McNeil JA, Willard H, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/ chromosome structure. J Cell Biol 132:259–275

    Article  PubMed  CAS  Google Scholar 

  21. Jeppesen P, Turner BM (1993) The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74:281–289

    Article  PubMed  CAS  Google Scholar 

  22. Kuroda MI, Kernan MJ, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947

    Article  PubMed  CAS  Google Scholar 

  23. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppensen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  PubMed  CAS  Google Scholar 

  24. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  25. Liskay RM, Evans R (1980) Inactive X chromosome DNA does not function in DNA-mediated cell transformation for the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci USA 77:4895–4898

    Article  PubMed  CAS  Google Scholar 

  26. Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roXl RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457

    Article  PubMed  CAS  Google Scholar 

  27. Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for Xinactivation by DNA methylation. Science 211:393–396

    Article  PubMed  CAS  Google Scholar 

  28. Priest JH, Heady JE, Priest RE (1967) Delayed onset of replication of human X chromosomes. J Cell Biol 35:483–487

    Article  PubMed  CAS  Google Scholar 

  29. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  PubMed  CAS  Google Scholar 

  30. Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD, Patal D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature 351:329–331

    Article  PubMed  CAS  Google Scholar 

  31. Brockdorff N et al. (1992) The product of the mouse Xist gene is a 15-kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71:515–526

    Article  PubMed  CAS  Google Scholar 

  32. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:3844

    Google Scholar 

  33. Brown CJ et al. (1992) The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71:527–542

    Article  PubMed  CAS  Google Scholar 

  34. Borsani G, Tonlorenzi R, Simmler MC, Dandolo L et al. (1991) Characterization of a murine gene expressed from the inactive X chromosome. Nature 351:325–328

    Article  PubMed  CAS  Google Scholar 

  35. Clemson CM, McNeil JA, Willard H, Lawrence JB (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/ chromosome structure. J Cell Biol 132:1–17

    Article  Google Scholar 

  36. Clerc P, Avner P (1998) Role of the region 3’ to Xist exon 6 in the counting process of X-chromosome inactivation. Nat Genet 19:249–253

    Article  PubMed  CAS  Google Scholar 

  37. Costanzi C, Pehrson J (1998) Histone macroH2Al is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    Article  PubMed  CAS  Google Scholar 

  38. Eicher EM (1970) X-Autosome translocations in the mouse: total inactivation versus partial inactivation of the X chromosome. Adv Genet 15:175–259

    Article  PubMed  CAS  Google Scholar 

  39. Herzing LBK, Romer JT, Horn JM, Ashworth A (1997) Xist has properties of the X-chromosome inactivation centre. Nature 386:272–275

    Article  PubMed  CAS  Google Scholar 

  40. Kay GF, Barton SC, Surani MA, Rastan S (1993) Expression of Xist during mouse development suggests a role in the initiation of X chromosome inactivation. Cell 72:171–182

    Article  PubMed  CAS  Google Scholar 

  41. Keitges EA, Palmer CG (1986) Analysis of spreading of inactivation in eight X-autosome translocations utilizing the high resolution RBG technique. Hum Genet 72:230–236

    Article  Google Scholar 

  42. Lee JT, Strauss WM, Dausman JA, Jaenisch R (1996) A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86:83–94

    Article  PubMed  CAS  Google Scholar 

  43. Lee JT, Jaenisch R (1997) Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature 386:275–279

    Article  PubMed  CAS  Google Scholar 

  44. Penny GD, Kay GF, Sheardown S, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    Article  PubMed  CAS  Google Scholar 

  45. Migeon BR (1994) X-chromosome inactivation: molecular mechanisms and genetic consequences. TIG 10:230–235

    Article  PubMed  CAS  Google Scholar 

  46. Panning B, Dausman J, Jaenisch R (1997) X chromosome inactivation is mediated by Xist RNA stabilization. Cell 90:907–916

    Article  PubMed  CAS  Google Scholar 

  47. Rastan S, Brown SDM (1990) The search for the mouse X-chromosome inactivation centre. Genet Res Camb 56:99–106

    Article  CAS  Google Scholar 

  48. Sheardown SA, Duthie SM, Johnston CM, Newall AET, Formstone EJ et al. (1997) Stabilization of Xist RNA mediate initiation of X chromosome inactivation. Cell 91:99–107

    Article  PubMed  CAS  Google Scholar 

  49. Ashworth A, Rastan S, Lovell-Badge R, Kay G (1991) Xchromosome inactivation may explain the difference in viability of XO humans and mice. Nature 351:406–408

    Article  PubMed  CAS  Google Scholar 

  50. Carrel L, Hunt PA, Willard H (1996) Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene. Hum Molr Genet 5:1361–1366

    Article  CAS  Google Scholar 

  51. Disteche C (1995) Escape from X inactivation in human and mouse. T IG 11:17–22

    Article  PubMed  CAS  Google Scholar 

  52. Sheardown S, Norris D, Fisher A, Brockdorff N (1996) The mouse Smcx gene exhibits developmental and tissue specific variation in degree of escape from X inactivation. Hum Mol Genet 5:1355–1360

    Article  PubMed  CAS  Google Scholar 

  53. Handel MA, Hunt PA (1992) Sex chromosome pairing and activity during mammalian meiosis. BioEssays 14:817–822

    Article  PubMed  CAS  Google Scholar 

  54. Henderson SA (1965) RNA synthesis during male meiosis and spermatogenesis. Chromosoma 15:345–366

    Article  Google Scholar 

  55. Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xzsf-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11: 156–166

    Article  PubMed  CAS  Google Scholar 

  56. McCarrey JR, Dilworth DD (1992) Expression of Xist in mouse germ cells correlates with X-chromosome inactivation. Nat Genet 2:200–203

    Article  PubMed  CAS  Google Scholar 

  57. Monesi, V (1965) Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 17:11–21

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Lee, J.T. (1999). X-Chromosome Inactivation. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics