Skip to main content

DNA Methylation

  • Chapter
Development
  • 650 Accesses

Abstract

Multicellular organisms develop and produce hundreds of different cellular phenotypes for the most part without any purposeful change to the primary sequence of the genome. An invariant genotype can create such phenotypic diversity by employing selectivity in its pattern of gene expression. It is easy to envision that cellular phenotype results from an interplay between the information encoded in the genome and external signals that direct the subset of genes to be expressed. What is perhaps more difficult to understand is how stability in this cellular phenotype is achieved. Immortalized fibroblast cell lines can be grown in culture for decades and still be quite recognizable as fibroblasts. Obviously, these cells are not behaving like fibroblasts as a consequence of their quite artificial environment dictating that they should behave like fibroblasts. Their phenotype has apparently been internally stabilized, yet without any hardwired genetic changes. Such a mitotically (or meiotically) heritable state of gene activity that is not attributable to a change in the primary DNA sequence is referred to as an epigenetic state. The contrasting demands put on epigenetic mechanisms are, on the one hand, a high degree of flexibility during embryonic development, and on the other, an impressive amount of stability in the subsequent adult years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  2. Martienssen RA, Richards EJ (1995) DNA methylation in eukaryotes. Curr Opin Genet Dev 5:234–242

    Article  PubMed  CAS  Google Scholar 

  3. Heby O (1995) DNA methylation and polyamines in embryonic development and cancer. Int J Dev Biol 39:737–757

    PubMed  CAS  Google Scholar 

  4. Adams RL (1995) Eukaryotic DNA methyltransferasesstructure and function. Bioessays 17:139–145

    Article  PubMed  CAS  Google Scholar 

  5. Bestor TH, Verdine GL (1994) DNA methyltransferases. Curr Opin Cell Biol 6:380–389

    Article  PubMed  CAS  Google Scholar 

  6. Cheng X (1995) Structure and function of DNA methyltransferases. Annu Rev Biophys Biomol Struct 24:293–318

    Article  PubMed  CAS  Google Scholar 

  7. Antequera F, Bird A (1993) CpG islands. In: Jost JP, Saluz HP (eds) DNA methylation: molecular biology and biological significance. Birkhauser, Basel, pp 169–185

    Google Scholar 

  8. Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4:1751–1755

    PubMed  CAS  Google Scholar 

  9. Antequera F, Boyes J, Bird A (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514

    Article  PubMed  CAS  Google Scholar 

  10. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    Article  PubMed  CAS  Google Scholar 

  11. Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetics and epigenetics. Annu Rev Genet 30:441–464

    Article  PubMed  CAS  Google Scholar 

  12. Rein T, DePamphilis ML, Zorbas H (1998) Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 26:2255–2264

    Article  PubMed  CAS  Google Scholar 

  13. Jackson-Grusby L, Jaenisch R (1996) Experimental manipulation of genomic methylation. Semin Cancer Biol 7:261–268

    Article  PubMed  CAS  Google Scholar 

  14. Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13: 444–449

    Article  PubMed  CAS  Google Scholar 

  15. Bestor TH (1998) Gene silencing. Methylation meets acetylation. Nature 393:311–312

    Article  PubMed  CAS  Google Scholar 

  16. Panning B, Jaenisch R (1998) RNA and the epigenetic regulation of X chromosome inactivation. Cell 93:305–308

    Article  PubMed  CAS  Google Scholar 

  17. Bartolomei MS, Tilghman SM (1997) Genomic imprinting in mammals. Annu Rev Genet 31:493–525

    Article  PubMed  CAS  Google Scholar 

  18. Surani MA (1998) Imprinting and the initiation of gene silencing in the germ line. Cell 93:309–312

    Article  PubMed  CAS  Google Scholar 

  19. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  20. Gonzalgo ML, Jones PA (1997) Mutagenic and epigenetic effects of DNA methylation. Mutat Res 386:107–118

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Laird, P.W. (1999). DNA Methylation. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics