Skip to main content
Book cover

Development pp 371–387Cite as

Insertional Mutagenesis in Zebrafish

  • Chapter
  • 654 Accesses

Abstract

Classical forward genetics identifies genes based upon the phenotype that results when the gene is mutated; the gene itself can then be molecularly cloned. This is in contrast to reverse genetics, in which the consequences of the absence of gene products are determined either through the use of inhibitors of the gene products, the expression of dominant negative alleles, or, in the case of mice, the use of homologous recombination in embryonic stem (ES) cells to create a null allele of the gene. The primary distinction between the reverse genetic approaches and the forward genetic approach is that in the former, the gene products must be identified prior to the assessment of their role in a biological process, while in the latter it is their essential role in that process which identifies them. If one’s interest is to define the role of a specific protein, a specific signaling pathway, or a gene whose human homologue is implicated in a disease, then the reverse genetics approaches are ideal. However, if one’s primary interest is, for example, a developmental process, the most straight forward way to identify the genes essential or that process is to perform a forward genetic screen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimmel CB (1989) Genetics and early development of zebrafish. Trends Genet 5:283–288

    Article  PubMed  CAS  Google Scholar 

  2. Nüsslein-Volhard C (1994) Of flies and fishes. Science 266:572–574

    Article  PubMed  Google Scholar 

  3. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature 291:293–296

    Article  PubMed  CAS  Google Scholar 

  4. Streisinger G, Singer F, Walker C, Knaiber D, Dower N (1986) Segregation analysis and gene-centromere distances in zebrafish. Genetics 112:311–319

    PubMed  CAS  Google Scholar 

  5. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SCF, Malicki J, Stemple DL, Stainier DYR, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

    PubMed  CAS  Google Scholar 

  6. Eisen J (1996) Zebrafish make a big splash. Cell 87:969–977

    Article  PubMed  CAS  Google Scholar 

  7. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJM, Jiang Y-J, Heisenberg C-P, Kelsh RN, Furutani-Seiki M, Vogelsang E, Beuchle D, Schach U, Fabian C, Niisslein-Volhard C (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    PubMed  CAS  Google Scholar 

  8. Mullins MC, Hammerschmidt M, Haffter P, Nüsslein-Volhard C(1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4:189–202

    Article  PubMed  CAS  Google Scholar 

  9. Solnica-Krezel L, Schier AF, Driever W (1994) Efficient recovery of ENU-induced mutations from the zebrafish germline. Genetics 136:1401–1420

    PubMed  CAS  Google Scholar 

  10. Johnson SL, Gates MA, Johnson M, Talbot WS, Home S, Baik K, Rude S, Wong JR, Postlethwait JH (1996) Centromere-linkage analysis and consolidation of the zebrafish genetic map. Genetics 142:1277–1288

    PubMed  CAS  Google Scholar 

  11. Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ (1998) A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet 18:338–343

    Article  PubMed  CAS  Google Scholar 

  12. Postlethwait JH, Talbot WS (1997) Zebrafish genomics: from mutants to genes. Trends Genet 13:183–190

    Article  PubMed  CAS  Google Scholar 

  13. Cooley L, Kelley R, Sprading A (1988) Insertional mutagenesis of the Drosophila genome with single P elements. Science 239:1121–1128

    Article  PubMed  CAS  Google Scholar 

  14. Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523

    Article  PubMed  CAS  Google Scholar 

  15. Harbers K, Kuehn M, Delius H, Jaenisch R (1984) Insertion of retrovirus into the first intron of al (I) collagen gene leads to embryonic lethal mutation in mice.Proc Natl Acad Sci USA 81:1504–1508

    Article  PubMed  CAS  Google Scholar 

  16. Jaenisch R (1988) Transgenic Animals. Science 240:1468–1474

    Article  PubMed  CAS  Google Scholar 

  17. Jaenisch R, Harbers K, Schnieke A, Lohler J, Chumakov I, Jahner D, Grotkopp D, Hoffman E (1983) Germline integration of Moloney murine leukemia virus at the Mov 13 locus leads to recessive lethal mutation and early embryonic death. Cell 32:209–216

    Article  PubMed  CAS  Google Scholar 

  18. Meisler M (1992) Insertional mutation of “classical” and novel genes in transgenic mice. Trends Genet 8:341–344

    PubMed  CAS  Google Scholar 

  19. Palmiter RD, Brinster RL (1986) Germ-line transformation of mice. Annu Rev Genet 20:465–499

    Article  PubMed  CAS  Google Scholar 

  20. Spradling AC, Stern DM, Kiss I, Roote J, Laverty T, Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc Natl Acad Sci USA 92:10824–10830

    Article  PubMed  CAS  Google Scholar 

  21. Woychik RP, Maas RL, Zeller R, Vogt T, Leder P (1990) ‘Formins’: proteins deduced from the alternative transcripts of the limb deformity gene. Nature 346:850–855

    Article  PubMed  CAS  Google Scholar 

  22. Culp P, Nüsslein-Volhard C, Hopkins N (1991) High-frequency germ-line transmission of plasmid DNA sequences injected into fertilized zebrafish eggs. Proc Natl Acad Sci USA 88:7953–7957

    Article  PubMed  CAS  Google Scholar 

  23. Stuart GW, McMurray JV, Westerfield M (1988) Replication, integration and stable germ-line transmission of foreign sequences injected into early zebrafish embryos. Development 103:403–412

    PubMed  CAS  Google Scholar 

  24. Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci USA 90: 8033–8037

    Article  PubMed  CAS  Google Scholar 

  25. Emi N, Friedmann T, Yee J-K (1991) Pseudotype formation of murine leukemia virus with the G protein of vesicular stomatitis virus. J Virol 65:1202–1207

    PubMed  CAS  Google Scholar 

  26. Gaiano N, Allende M, Amsterdam A, Kawakami K, Hopkins N (1996) Highly efficient germ-line transmission of proviral insertions in zebrafish. Proc Natl Acad Sci USA 93:7777–7782

    Article  PubMed  CAS  Google Scholar 

  27. Hopkins N (1993) High titers of retrovirus (vesicular stomatitis virus) pseudotypes, at last. Proc Natl Acad Sci USA 90:8759–8760

    Article  PubMed  CAS  Google Scholar 

  28. Lin S, Gaiano N, Culp P, Burns JC, Friedman T, Yee J-K, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666–669

    Article  PubMed  CAS  Google Scholar 

  29. Allende ML, Amsterdam A, Becker T, Kawakami K, Gaiano N, Hopkins N (1996) Insertional mutagenesis in zebrafish identifies two novel genes, pescadillo and dead eye, essential for embryonic development. Genes Dev 10:3141–3155

    Article  PubMed  CAS  Google Scholar 

  30. Amsterdam A, Yoon C, Allende M, Becker T, Kawakami K, Burgess S, Gaiano N, Hopkins N (1997) Retrovirusmediated insertional mutagenesis in zebrafish and identification of a molecular marker for embryonic germ cells. Cold Spring Harbor Symp Quant Biol 62:437–450

    PubMed  CAS  Google Scholar 

  31. Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383:829–832

    Article  PubMed  CAS  Google Scholar 

  32. Schier AF, Joyner AL, Lehmann R, Talbot WS (1996) From screens to genes: prospects for insertional mutagenesis in zebrafish. Genes Dev 10:3077–3080

    Article  PubMed  CAS  Google Scholar 

  33. Barker D, Wu H, Hartung S, Breindl M, Jaenisch R (1991) Retrovirus-induced insertional mutagenesis: mechanism of collagen mutation in Mov 13 mice. Mol Cell Biol 11:5154–5163

    PubMed  CAS  Google Scholar 

  34. Seperack PK, Mercer JA, Strobel M, Copeland NG, Jenkins NA (1995) Retroviral sequences located within an intron of the Dilute gene alter dilute expression in a tissue-specific manner. EMBO 14:2326–2332

    CAS  Google Scholar 

  35. Withers-Ward ES, Kitamura Y, Barnes JP, Coffin JM (1994) Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev 8:1473–1487.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Amsterdam, A., Hopkins, N. (1999). Insertional Mutagenesis in Zebrafish. In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics