Skip to main content

Formation of Embryonic Axes and Blastoderm Pattern in Drosophila

  • Chapter
Development

Abstract

Drosophila melanogaster is a small dipteran fly that belongs to the group of holometabolous insects. Both the larvae and the adult flies (Fig. 1) live on rotting fruit, and feed mainly on the fungi and bacteria that grow there. vDrosophila was introduced into the genetic laboratory by T.H. Morgan around 1910, because it is easy to grow (generation time 2 weeks with about 300 offsprings per female) and because it displays a wealth of morphological markers that could be exploited for genetic experiments. D. melanogaster quickly became one of the genetically best analyzed organisms. Morgan received the Nobel prize for medicine in 1933 for describing the principles of genetic recombination and for the discovery of chromosomal sex determination. One of his coworkers,H.J. Muller, received the prize in 1946 for discovering the mutagenicity of X-rays. The Drosophila system has since been continuously used for the analysis of many biological questions, ranging from biochemistry to behavioral genetics and evolution. To date the sophistication of the genetic tools available in Drosophila is unparalleled, and this was instrumental in the breakthrough of developmental biology in the 1980s that resulted in another Nobel prize, in 1995, to Edward Lewis, Christiane NiissleinVolhard and Eric Wieschaus for their work on homeosis and embryonic pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner M (1989) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  2. Bridges CB (1935) Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J Hered 26:60–64

    Google Scholar 

  3. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  Google Scholar 

  4. Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux’s Arch Dev Biol 193:267–282

    Article  Google Scholar 

  5. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York

    Google Scholar 

  6. Lohs-Schardin M, Cremer C, Niisslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255

    Article  PubMed  CAS  Google Scholar 

  7. Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642

    Article  PubMed  CAS  Google Scholar 

  8. Casanova J, Struhl G (1989) Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern in Drosophila. Genes Dev 3:2025–2038

    Article  PubMed  CAS  Google Scholar 

  9. Driever W, Nüsslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54:83–93

    Article  PubMed  CAS  Google Scholar 

  10. Roth S, Stein D, Nüsslein-Volhard C (1989) A gradient of nuclear localization of the dorsal protein determines dorsoventral pattern in the Drosophila embryo. Cell 59:1189–1202

    Article  PubMed  CAS  Google Scholar 

  11. St Johnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–219

    Article  PubMed  CAS  Google Scholar 

  12. Wang C, Lehmann R (1991) Nanos is the localized posterior determinant in Drosophila. Cell 66:637–647

    Article  PubMed  CAS  Google Scholar 

  13. Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  PubMed  CAS  Google Scholar 

  14. Clark I, Giniger E, Ruoholabaker H, Jan LY, Jan YN (1994) Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr Biol 4:289–300

    Article  PubMed  CAS  Google Scholar 

  15. Gavis ER, Lehmann R (1992) Localization of nanos RNA controls embryonic polarity. Cell 71:301–313

    Article  PubMed  CAS  Google Scholar 

  16. Gavis ER, Lehmann R (1994) Translational regulation of nanos by RNA localization. Nature 369:315–318

    Article  PubMed  CAS  Google Scholar 

  17. Hashimoto C, Hudson KL, Anderson KV (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269–279

    Article  PubMed  CAS  Google Scholar 

  18. Hong CC, Hashimoto C (1995) An unusual mosaic protein with a protease domain, encoded by the nudel gene, is involved in defining embryonic dorsoventral polarity in Drosophila. Cell 82:785–794

    Article  PubMed  CAS  Google Scholar 

  19. Klingler M, Erdelyi M, Szabad J, Nüsslein-Volhard C (1988) Function of torso in determining the terminal anlagen of the Drosophila embryo. Nature 335:275–277

    Article  PubMed  CAS  Google Scholar 

  20. Macdonald PM, Struhl G (1988) Cfs-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature 336:595–598

    Article  PubMed  CAS  Google Scholar 

  21. Morisato D, Anderson KV (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29:371–399

    Article  PubMed  CAS  Google Scholar 

  22. Nilson LA, Schüpbach T (1998) Localized requirements for windbeutel and pipe reveal a dorsoventral prepattern within the follicular epithelium of the Drosophila ovary. Cell 93:253–262

    Article  PubMed  CAS  Google Scholar 

  23. Savantbhonsale S, Montell DJ (1993) Torsolike encodes the localized determinant of Drosophila terminal pattern formation. Gene Dev 7:2548–2555

    Article  CAS  Google Scholar 

  24. Schneider DS, Jin YS, Morisato D, Anderson KV (1994) A processed form of the Spatzle protein defines dorsalventral polarity in the Drosophila embryo. Development 120:1243–1250

    PubMed  CAS  Google Scholar 

  25. Smith CL, Delotto R (1994) Ventralizing signal determined by protease activation in Drosophila embryogenesis. Nature 368:548–551

    Article  PubMed  CAS  Google Scholar 

  26. Sprenger F, Stevens LM, Nüsslein-Volhard C (1989) The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature 338:478–483

    Article  PubMed  CAS  Google Scholar 

  27. Stein D, Nüsslein-Volhard C (1992) Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68:429–440

    Article  PubMed  CAS  Google Scholar 

  28. Stevens LM, Frohnhöfer HG, Klingler M, Nüsslein-Volhard C (1990) Localized requirement for torsolike expression in the follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346:660–663

    Article  PubMed  CAS  Google Scholar 

  29. Gonzalez-Reyes A, Elliott H, St Johnston D (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375:654–658

    Article  PubMed  CAS  Google Scholar 

  30. Lane ME, Kalderon D (1994) RNA localization alone the anteroposterior axis of the Drosophila oocyte requires PKA-mediated signal transduction to direct normal microtubule organization. Gene Dev 8:2986–2995

    Article  PubMed  CAS  Google Scholar 

  31. Neumansilberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75:165–174

    CAS  Google Scholar 

  32. Roth S, Schupbach T (1994) The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development 120:2245–2257

    PubMed  CAS  Google Scholar 

  33. Bhanot P, Brink M, Samos CH, Hsieh JC, Wang YS, Macke JP, Andrew D, Nathans J, Nusse R (1996) A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382:225–230

    Article  PubMed  CAS  Google Scholar 

  34. Chen Y, Struhl G (1996) Dual roles for patched in sequestering and transducing hedgehog. Cell 87:553–563

    Article  PubMed  CAS  Google Scholar 

  35. Harding K, Hoey T, Warrior R, Levine M (1989) Autoregulatory and gap-response elements of the even-skipped promoter of Drosophila. EMBOJ 8:1205–1212

    CAS  Google Scholar 

  36. Howard KR, Struhl G (1990) Decoding positional information: regulation of the pair-rule gene hairy. Development 110:1223–1232

    PubMed  CAS  Google Scholar 

  37. Hülskamp M, Tautz D (1991) Gap genes and gradients -the logic behind the gaps. BioEssays 13:261–268

    Article  PubMed  Google Scholar 

  38. Klingler M, Soong J, Butler B, Gergen JP (1996) Disperse versus compact elements for the regulation of runt stripes in Drosophila. Dev Biol 177:73–84

    Article  PubMed  CAS  Google Scholar 

  39. Pankratz MJ, Jäckle H (1993) Blastoderm segmentation. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 467–516

    Google Scholar 

  40. Stone DM, Hynes M, Armanini M, Swanson TA, Gu Q, Johnson RL, Scott MP, Pennica D, Goddard A, Phillips H, Noll M, Hooper JE, De Sauvage F, Rosenthal A (1996) The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384: 129–134

    Article  PubMed  CAS  Google Scholar 

  41. Yu Y, Pick L (1995) Non-periodic cues generate seven ftz stripes in the Drosophila embryo. Mech Dev 50: 163–175

    Article  PubMed  CAS  Google Scholar 

  42. Driever W, Nüsslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54:95–104

    Article  PubMed  CAS  Google Scholar 

  43. Driever W, Nüsslein-Volhard C (1989) The bicoid protein is a positive regulator of hunchback transcription in the early embryo. Nature 337:138–143

    Article  PubMed  CAS  Google Scholar 

  44. Frohnhöfer HG, Nüsslein-Volhard C (1986) Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324:120–125

    Article  Google Scholar 

  45. Hülskamp M, Schröder C, Pfeifle C, Jäckie H, Tautz D (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338:629–832

    Article  PubMed  Google Scholar 

  46. Ip YT, Levine M, Small SJ (1992) The bicoid and dorsal morphogens use a similar strategy to make stripes in the Drosophila embryo. J Cell Sci 16 (Suppl)33–38

    CAS  Google Scholar 

  47. Ma XG, Yuan D, Diepold K, Scarborough T, Ma J (1996) The Drosophila morphogenetic protein bicoid binds DNA cooperatively. Development 122:1195–1206

    PubMed  CAS  Google Scholar 

  48. Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80:747–756

    Article  PubMed  CAS  Google Scholar 

  49. Rivera-Pomar R, Jäckle H (1996) From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet 12:478–483

    Article  PubMed  CAS  Google Scholar 

  50. Struhl G (1989) Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos. Nature 338:741–744

    Article  PubMed  CAS  Google Scholar 

  51. Struhl G, Struhl K, Macdonald PM (1989) The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell 57:1259–1273

    Article  PubMed  CAS  Google Scholar 

  52. Kraut R, Levine M (1991) Mutually repressive interactions between the gap genes giant and krüppel define middle body regions of the Drosophila embryo. Development-Camb 111:611–622

    CAS  Google Scholar 

  53. Arendt D, Nübler-Jung K (1994)Inversion of dorso-ventral axis? Nature 371:26

    Article  CAS  Google Scholar 

  54. Slack JMW, Holland PWH, Graham CF (1993) The zootype and the phylotypic stage. Nature 361:490–492

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Klingler, M., Tautz, D. (1999). Formation of Embryonic Axes and Blastoderm Pattern in Drosophila . In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics