Skip to main content

Environmental Light Signals and the Development of Arabidopsis

  • Chapter
Development
  • 651 Accesses

Abstract

Despite their apparent diversity, seed plants all exhibit the same body plan. The vegetative body is composed of three organs: leaf, stem and root. The primary function of the leaf is photosynthesis, that of the stem is support, and that of the root is anchorage and absorption of water and minerals. Because plants cannot move, to maintain their supply of water and inorganic elements and to reach the optimal light exposure for the photosynthetic activity, they must grow continuously. Therefore plants during their life cycle expand the surfaces involved in the uptake and capture of sunlight and nutrients through the elongation and branching of stems, the expans ion of leaves, and the formation of a branching root system that is elaborated with root hairs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alscher RG, Cumming JR (eds) (1990) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York

    Google Scholar 

  2. Fosket DE (1994) Plant growth and development: a molecular approach. Academic Press, San Diego

    Google Scholar 

  3. Meyerowitz EM, Somerville CR (eds) (1994) Arabidopsis. Cold Spring Harbor Laboratories Press, Cold Spring Harbor

    Google Scholar 

  4. Barnes SA, McGrath RB, Chua NH (1997) Light signal transduction in plants. Trends Cell Biol 7:21–26

    Article  PubMed  CAS  Google Scholar 

  5. Elich TD, Chory J (1997) Phytochrome: if it look and smells like a histidine kinase, is it a histidine kinase? Cell 91:713–716

    Article  PubMed  CAS  Google Scholar 

  6. Kendrick RE, Kronenberg GHM (eds) (1994) Photomorphogenesis in plants. 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  7. von Arnim A, Deng X-W (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Article  Google Scholar 

  8. Cashmore AR (1997) The cryptochrome family of photoreceptors. Plant Cell Env 20:764–767

    Article  CAS  Google Scholar 

  9. Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng X-W (1996) The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86:115–121

    Article  PubMed  CAS  Google Scholar 

  10. Quail PH (1994) Photosensory perception and signal transduction in plants. Cur Opin Genet Dev 4:652–661

    Article  CAS  Google Scholar 

  11. von Arnim AG, Deng X-W (1994) Light inactivation of Arabidopsis photomorphogenic COP1 involves a cellspecific regulation of its nucleo-cytoplasmic partitioning. Cell 79:1035–1045

    Article  Google Scholar 

  12. Ahmad M, Jarillo JA, Cashmore AR (1998) Chimeric proteins between cryl and cry2 Arabidopsis blue light photoreceptors indicate overlapping functions and varying protein stability. Plant Cell 10:197–208

    Article  PubMed  CAS  Google Scholar 

  13. Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, Sharrock RA (1997) A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9:1317–1326

    Article  PubMed  CAS  Google Scholar 

  14. Barnes SA, Quaggio RB, Whitelam GC, Chua N-H (1996) fhyl defines a branch point in phytochrome A signal transduction pathways for gene expression. Plant J 10:1155–1161

    Article  PubMed  CAS  Google Scholar 

  15. Lin C, Yang H, Guo H, Mockler T, Chen J, Cashmore AR (1998) Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Proc Natl Acad Sci USA 95:2686–2690

    Article  PubMed  CAS  Google Scholar 

  16. Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995

    Article  PubMed  CAS  Google Scholar 

  17. Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes: photosensory perception and signal transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  18. Smith H (1995) Physiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol 46:289–315

    Article  CAS  Google Scholar 

  19. Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    Article  PubMed  CAS  Google Scholar 

  20. Carabelli M, Morelli G, Whitelam G, Ruberti I (1996) Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93:3530–3535

    Article  PubMed  CAS  Google Scholar 

  21. Di Cristina M, Sessa G, Dolan L, Linstead P, Baima S, Ruberti I, Morelli G (1996) The Arabidopsis ATHB-10 (GLABRA2) is an HD-Zip protein required for regulation of root hair development. Plant J 10:393–402

    Article  PubMed  CAS  Google Scholar 

  22. Morelli G, Baima S, Carabelli M, Di Cristina M, Lucchetti S, Sessa G, Steindler C, Ruberti I (1998) Homeodomain-leucine zipper proteins in the control of plant growth and development. In: Last R, Lo Schiavo F, Morelli G, Raikel N (eds) Cellular integration of signaling pathways in plant development. Springer, Berlin Heidelberg New York, Vol H 104:251–262

    Google Scholar 

  23. Schena M, Lloyd AM, Davis RW (1993) The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Dev 7:367–379

    Article  PubMed  CAS  Google Scholar 

  24. Scheres B (1997) Cell signaling in root development. Curr Opin Genet Dev 7:501–506

    Article  PubMed  CAS  Google Scholar 

  25. Smith H, Whitelam GC (1997) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes. Plant Cell Environ 20:840–844

    Article  Google Scholar 

  26. Amasino RM (1996) Control of flowering time in plants. Curr Opin Genet Dev 6:480–487

    Article  PubMed  CAS  Google Scholar 

  27. Bernier G (1988) The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol 39:175–219

    Article  Google Scholar 

  28. Koornneef M (1997) Plant development: timing when to flower. Curr Biol 7:R651–R652

    Article  PubMed  CAS  Google Scholar 

  29. Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024

    Article  PubMed  CAS  Google Scholar 

  30. Coupland G (1997) Regulation by flowering by photoperiod in Arabidopsis. Plant Cell Environ 20:785–789

    Article  Google Scholar 

  31. Guo H, Yang H, Mockler TC, Lin C (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363

    Article  PubMed  CAS  Google Scholar 

  32. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  PubMed  CAS  Google Scholar 

  33. Ratcliffe OJ, Amaya I, Vincent CA, Rotstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    PubMed  CAS  Google Scholar 

  34. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62

    Article  PubMed  CAS  Google Scholar 

  35. Chen JJ, Hanssen BJ, William A, Sinha N (1997) A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9:1289–1304

    Article  PubMed  CAS  Google Scholar 

  36. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  37. Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  38. Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  PubMed  CAS  Google Scholar 

  39. Smith H (1990) Signal perception, differential expression within multigene families and the molecular basis of phenotypic plasticity. Plant Cell Environ 13:585–594

    Article  CAS  Google Scholar 

  40. Theifien G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS- box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin · Heidelberg New York

About this chapter

Cite this chapter

Morelli, G., Ruberti, I. (1999). Environmental Light Signals and the Development of Arabidopsis . In: Russo, V.E.A., Cove, D.J., Edgar, L.G., Jaenisch, R., Salamini, F. (eds) Development. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59828-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59828-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64141-1

  • Online ISBN: 978-3-642-59828-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics