Skip to main content

The role of the mid-dorsolateral prefrontal cortex in working memory

  • Chapter
Executive Control and the Frontal Lobe: Current Issues

Abstract

Recent studies with nonhuman primates have shown that lesions of the mid-dorsolateral prefrontal cortex, which extends from the lip of the dorsal bank of the sulcus principalis to the midline (i.e., dorsal area 46 and 9/46 and area 9), give rise to severe and long-lasting impairments on self-ordered and externally ordered tasks designed to tax executive processing within working memory, rather than short-term memory per se. Lesions limited to area 9 give rise to a mild impairment on these tasks. Thus, the mid-dorsolateral prefrontal region has been shown to be critical for the monitoring of multiple events in working memory. The mid-dorsolateral prefrontal region receives visuospatial input from the posterior dorsolateral region (areas 8 and 6) and from the cortex within the middle part (sulcal area 46) and the caudal part (area 8) of the sulcus principalis. Nonspatial visual input originates from the ventrolateral prefrontal cortex. Thus, lesions focused on the middle to caudal part of the sulcus principalis would affect visuospatial input, but would not affect the flow of nonspatial visual object information that reaches the mid-dorsolateral prefrontal region from the ventrolateral prefrontal cortex. Lesions of the sulcus principalis produce a spatially selective impairment, whereas lesions of the mid-dorsolateral prefrontal region produce a more general impairment of the monitoring and manipulation of information in working memory. The results of recent functional neuroimaging studies with human subjects are consistent with the above findings from work with the monkey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA, Asanuma C, Essick G, Siegel RM (1990) Cortico-cortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule. J Comp Neurol 296:65–113

    Article  PubMed  CAS  Google Scholar 

  • Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20:249–261

    Article  PubMed  CAS  Google Scholar 

  • Barbas H, Mesulam M-M (1981) Organization afferent input to subdivisions of area 8 in the rhesus monkey. J Comp Neurol 200:407–431

    Article  PubMed  CAS  Google Scholar 

  • Barbas H, Mesulam M-M (1985) Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience 15:619–637

    Article  PubMed  CAS  Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K (1905) Beitraege zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung: Die Rindenfelder der niederen Affen. J Psychol Neurol (Leipzig) 4:177–226

    Google Scholar 

  • Brodmann K (1908) Beitraege zur histologischen Lokalisation der Grosshirnrinde. VI. Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol (Leipzig) 10:231–246

    Google Scholar 

  • Brodmann K (1909) Vergleichende Localisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

    Google Scholar 

  • Butters N, Pandya D (1969) Retention of delayed-alternation: effect of selective lesions of sulcus principalis. Science 165: 1271–1273

    Article  PubMed  CAS  Google Scholar 

  • Butters N, Pandya D, Sanders K, Dye P (1971) Behavioral deficits in monkeys after selective lesions within the middle third of sulcus principalis. J Comp Physiol Psychol 76:8–14

    Article  PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    Article  PubMed  CAS  Google Scholar 

  • Courtney SM, Petit L, Maisog J Ma, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351

    Article  PubMed  CAS  Google Scholar 

  • D’Esposito M, Aguirre GK, Zarahn E, Ballard D, Shin RK, Lease J (1998) Functional MRI studies of spatial and nonspatial working memory. Cogn Brain Res 7:1–13

    Article  Google Scholar 

  • Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13: 1479–1497

    PubMed  CAS  Google Scholar 

  • Fuster JM (1973) Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 36:61–76

    PubMed  CAS  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Rosvold HE (1970) Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 27:291–304

    Article  PubMed  CAS  Google Scholar 

  • Goldman PS, Rosvold HE, Vest B, Galkin TW (1971) Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. J Comp Physiol Psychol 77:212–220

    Article  PubMed  CAS  Google Scholar 

  • Gross CG, Weiskrantz L (1962) Evidence for dissociation of impairment on auditory discrimination and delayed response following lateral frontal lesions in monkeys. Exp Neurol 5:453–476

    Article  PubMed  CAS  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1987) Frontal eye fields as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys. II. Cortical connections. J Comp Neurol 271:473–492

    Google Scholar 

  • Jacobsen CF (1936) Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. Comp Psychol Monogr 13:1–60

    Google Scholar 

  • Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 248:43–49

    Article  PubMed  CAS  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    PubMed  CAS  Google Scholar 

  • Levy R, Goldman-Rakic PS (1999) Association of storage and processing functions in the dorsolateral prefrontal cortex of the nonhuman primate. J Neurosci 19:5149–5158

    PubMed  CAS  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16:5154–5167

    PubMed  CAS  Google Scholar 

  • Mishkin M (1957) Effects of small frontal lesions on delayed alternation in monkeys. J Neurophysiol 20:615–622

    PubMed  CAS  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Tran R Soc Lond B 298:85–95

    Article  Google Scholar 

  • Mishkin M, Manning FJ (1978) Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res 143:313–323

    Article  PubMed  CAS  Google Scholar 

  • Mishkin M, Vest B, Waxier M, Rosvold HE (1969) A re-examination of the effects of frontal lesions on object alternation. Neuropsychologia 7:357–363

    Article  Google Scholar 

  • Niki H (1974a) Prefrontal unit activity during delayed alternation in the monkey. I. Relation to direction of response. Brain Res 68:185–196

    Article  PubMed  CAS  Google Scholar 

  • Niki H (1974b) Prefrontal unit activity during delayed alternation in the monkey. II. Relation to absolute versus relative direction of response. Brain Res 68:197–204

    Article  PubMed  CAS  Google Scholar 

  • Owen AM (1997) The functional organization of working memory processes within the human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci 9:1329–1339

    Article  PubMed  CAS  Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Cerebral cortex. Plenum Press, New York, pp 3–61

    Google Scholar 

  • Passingham RE (1975) Delayed matching after selective prefrontal lesions in monkeys (Macaca mulatto). Brain Res 92:89–102

    Article  PubMed  CAS  Google Scholar 

  • Petrides M (1987) Conditional learning and the primate frontal cortex. In: Perecman E (ed) The frontal lobes revisited. IRBN Press, New York, pp 91–108

    Google Scholar 

  • Petrides M (1989) Frontal lobes and memory. In: Boller F, Grafman J (eds) Handbook of neuropsychology, Vol 3. Elsevier, Amsterdam, pp 75–90

    Google Scholar 

  • Petrides M (1991) Monitoring of selections of visual stimuli and the primate frontal cortex. Proc R Soc Lond B Biol Sci 246:293–298

    Article  CAS  Google Scholar 

  • Petrides M (1994) Frontal lobes and working memory: evidence from investigations of the effects of cortical excisions in non-human primates. In: Boller F, Grafman J (eds) Handbook of neuropsychology, Vol 9. Elsevier, Amsterdam, pp 59–82

    Google Scholar 

  • Petrides M (1995) Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. J Neurosci 15:359–375

    PubMed  CAS  Google Scholar 

  • Petrides M (1996) Specialized systems for the processing of mnemonic information within the primate frontal cortex. Philos Trans R Soc Lond B 351:1455–1462

    Article  CAS  Google Scholar 

  • Petrides M (1998) Working memory and the mid-dorsolateral prefrontal cortex. Soc Neurosci Abstr 24:18

    Google Scholar 

  • Petrides M (2000) Mapping prefrontal cortical systems for the control of cognition. In: Toga A, Mazziotta JC (eds) Brain mapping: the systems. Academic Press, San Diego, pp 157–176

    Google Scholar 

  • Petrides M, Milner B (1982) Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20:249–262

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (eds), Handbook of neuropsychology, Vol 9. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Petrides M, Pandya DN (1999) Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur J Neurosci 11:1011–1036

    Article  PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 90:873–877

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1989) Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: anatomical evidence for somatic representation in primate frontal association cortex. J Comp Neurol 282:293–316

    Article  PubMed  CAS  Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitec-ture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  PubMed  CAS  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. Springer, Berlin

    Google Scholar 

  • Sarkissov SA, Filimonoff IN, Kononowa EP, Preobraschenskaja IS, Kukuew LA (1955) Atlas of the cytoarchitectonic s of the human cerebral cortex. Medgiz, Moscow

    Google Scholar 

  • Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J Neurosci 15:4464–4487

    PubMed  CAS  Google Scholar 

  • Schwartz ML, Goldman-Rakic PS (1984) Callosal and intrahemi-spheric connectivity of the prefrontal association cortex in rhesus monkey: relation between intraparietal and principal sulcal cortex. J Comp Neurol 226:403–420

    Article  PubMed  CAS  Google Scholar 

  • Stamm J (1969) Electrical stimulation of frontal cortex in monkeys during delayed-response performance. J Comp Physiol Psychol 67:535–546

    Article  PubMed  CAS  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT Press, Cambridge, pp 549–586

    Google Scholar 

  • Ungerleider LG, Gaffan D, Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkeys. Exp Brain Res 76:473–484

    Article  PubMed  CAS  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. In: Schneider, W.X., Owen, A.M., Duncan, J. (eds) Executive Control and the Frontal Lobe: Current Issues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59794-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59794-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64128-2

  • Online ISBN: 978-3-642-59794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics