Skip to main content

Segregation of working memory functions within the dorsolateral prefrontal cortex

  • Chapter
Executive Control and the Frontal Lobe: Current Issues

Abstract

It is now widely accepted that the prefrontal cortex (PFC) plays a critical role in the neural network subserving working memory (WM). At least three related questions are still under debate: (1) is the PFC critical for all constituent processes of WM (i.e., short-term storage, manipulation, and utilization of mental representations) or only in one or a few of them? (2) Is there segregation of function among different cytoarchitectonic subdivisions of the PFC? (3) If this be the case, is this segregation based on the nature of the information being processed or on the type of cognitive operation performed? The present review article describes findings in the monkey supporting a modular “domain-specific” model of PFC functional organization with respect to WM operations. In this model, the dorsolateral prefrontal cortex (DLPFC) is composed of several subregions, based primarily on the nature of the information being processed in WM. Storage and processing functions are integrally related in each area. Future studies designed to map as yet uncharted areas of prefrontal cortex with refined anatomical and physiological approaches may provide a critical test of the model and evaluate the extent to which it applies generally or, instead, mainly to visual domains or only to dorsolateral convexity areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA, Essick GK, Siegel MR (1985) The encoding of spatial location by posterior parietal neurons. Science 230:456–458

    PubMed  CAS  Google Scholar 

  • Awh E, Jonides J, Smith EE, Schumacher EH, Koeppe RA (1996) PET evidence for a dissociation between the storage and rehearsal components of verbal working memory. Psychol Sci 7:25–31

    Google Scholar 

  • Bachevalier J, Mishkin M (1986) Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. Behav Brain Res 20:249–261

    PubMed  CAS  Google Scholar 

  • Baddeley A (1986) Working memory. Clarendon Press, Oxford

    Google Scholar 

  • Barbas H (1988) Anatomic organization of basoventral and me-diodorsal visual recipient prefrontal regions in the rhesus monkey. J Comp Neurol 276:313–342

    PubMed  CAS  Google Scholar 

  • Barbas H, Mesulam MM (1985) Cortical afferent input to the principalis region of the rhesus monkey. Neuroscience 15:619–637

    PubMed  CAS  Google Scholar 

  • Batuev AS, Shaefer VI, Orlov AA (1985) A comparative characteristics of unit activity in the prefrontal and parietal areas during delay performance in monkeys. Behav Brain Res 16:57–70

    PubMed  CAS  Google Scholar 

  • Bauer RH, Fuster JM (1976) Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. J Comp Physiol Psychol 90:293–302

    PubMed  CAS  Google Scholar 

  • Baylis GC, Rolls ET, Leonard CM (1985) Selectivity between faces in the responses of a population of neurons in the cortex in the superior temporal sulcus of the monkey. Brain Res 342:91–102

    PubMed  CAS  Google Scholar 

  • Beiger A, Puce A, Krystal JH, Gore JC, Goldman-Rakic PS, McCarthy G (1998) Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Hum Brain Map 6:14–32

    Google Scholar 

  • Bodner M, Kroger J, Fuster JM (1996) Auditory memory cells in dorsolateral prefrontal cortex. Neuroreport 7:1905–1908

    PubMed  CAS  Google Scholar 

  • Bruce CJ, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in the superior temporal sulcus of the macaque. J Neurophysiol 46:369–384

    PubMed  CAS  Google Scholar 

  • Bullier J, Schall JD, Morel A (1996) Functional streams in occipitofrontal connections in the monkey. Behav Brain Res 76:89–97

    PubMed  CAS  Google Scholar 

  • Butters N, Pandya DN (1969) Retention of delayed-alternation: effect of selective lesion of sulcus principalis. Science 165: 1271–1273

    PubMed  CAS  Google Scholar 

  • Butters N, Pandya D, Sanders K, Dye P (1971) Behavioral deficits in monkeys after selective lesions within the middle third of sulcus principalis. J Comp Physiol Psychol 72:132–144

    Google Scholar 

  • Butters N, Pandya D, Stein D, Rosen J (1972) A search for the spatial engram within the frontal lobes of monkeys. Acta Neurobiol Exp 32:305–329

    CAS  Google Scholar 

  • Carlson S, Tanila H, Pertovaara A, Lahteenmaki A (1990) Vertical and horizontal coding of space in the monkey dorsolateral prefrontal cortex. Brain Res 527:145–149

    PubMed  CAS  Google Scholar 

  • Carlson S, Rama P, Tanila H, Linnankoski I, Mansikka H (1997) Dissociation of mnemonic coding and other functional neuronal processing in the monkey prefrontal cortex. J Neurophysiol 77:761–774

    PubMed  CAS  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkey. II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445

    PubMed  CAS  Google Scholar 

  • Chafee MV, Goldman-Rakic PS (1998) Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 79:2919–2940

    PubMed  CAS  Google Scholar 

  • Chavis DA, Pandya DN (1976) Further observations on cortico-frontal connections in the rhesus monkey. Brain Res 117:369–386

    PubMed  CAS  Google Scholar 

  • Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC (1994) Activation of the prefrontal cortex in a non-spatial working memory task with functional MRI. Hum Brain Map 1:293–304

    Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory task. Nature 386:604–608

    PubMed  CAS  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1996) Object and spatial working memory activate separate neural system in human cortex. Cereb Cortex 6:39–49

    PubMed  CAS  Google Scholar 

  • Courtney SM, Ungerleider LG, Keil K, Haxby JV (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386:608–611

    PubMed  CAS  Google Scholar 

  • Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV (1998) An area specialized for spatial working memory in human frontal cortex. Science 279:1347–1351

    PubMed  CAS  Google Scholar 

  • Demb JB, Desmond JE, Wagner AD, Vaidya CJ, Glover GH, Gabrieli JDE (1995) Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficult and process specificity. J Neurosci 15:5870–5878

    PubMed  CAS  Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulus selective properties of inferior temporal area TEO in macaque monkeys. J Neurosci 4:2051–2062

    PubMed  CAS  Google Scholar 

  • Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334:125–150

    PubMed  CAS  Google Scholar 

  • Friedman HR, Goldman-Rakic PS (1994) Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. J Neurosci 14:2775–2788

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigm. J Neurophysiol 63:811–831

    Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1991) Neuronal activity related to saccadic eye mouvements in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 65:1464–1483

    PubMed  CAS  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993a) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 13: 1479–1497

    PubMed  CAS  Google Scholar 

  • Funahashi S, Chafee MV, Goldman-Rakic PS (1993b) Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365:753–756

    PubMed  CAS  Google Scholar 

  • Funahashi S, Inoue M, Kubota K (1997) Delay-period activity in the primate prefrontal cortex encoding multiple spatial positions and their order of presentation. Behav Brain Res 84: 203–223

    PubMed  CAS  Google Scholar 

  • Fuster J (1989) The prefrontal cortex. Raven press, New York

    Google Scholar 

  • Fuster J (1997) The prefrontal cortex. Raven press, New York

    Google Scholar 

  • Fuster JM (1990) Inferotemporal units in selective visual attention and short-term memory. J Neurophysiol 64:681–697

    PubMed  CAS  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    PubMed  CAS  Google Scholar 

  • Fuster JM, Bauer RH (1974) Visual short-term memory deficit from hypothermia of frontal cortex. Brain Res 81:393–400

    PubMed  CAS  Google Scholar 

  • Fuster JM, Jervey JP (1981) Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212:952–955

    PubMed  CAS  Google Scholar 

  • Goldberg ME, Bushnell MC (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol 46:773–787

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Mountcastle F (eds) Handbook of Physiology, Vol 5. The American Physiological Society, Washington DC, pp 373–517

    Google Scholar 

  • Goldman-Rakic PS (1996) Regional and cellular fractionation of working memory. Proc Natl Acad Sci USA 93:13473–13480

    PubMed  CAS  Google Scholar 

  • Goldman PS, Rosvold HE, Vest B, Galkin TW (1971) Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. J Comp Physiol Psychol 77:212–220

    PubMed  CAS  Google Scholar 

  • Hunter WS (1913) The delayed reaction in animals and children. Behav Monogr 2:1–86

    Google Scholar 

  • Iversen SD, Mihskin M (1970) Perseveration interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11:376–386

    PubMed  CAS  Google Scholar 

  • Jacobson S, Trojanowski JQ (1977) Prefrontal granular cortex of the rhesus monkey. I. Intrahemispheric cortical afferents. Brain Res 132:209–233

    PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–820

    PubMed  CAS  Google Scholar 

  • Kawamura K, Neito J (1984) Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase technique. Neurosci Res 1:89–103

    PubMed  CAS  Google Scholar 

  • Kelley WM, Miezin FM, McDermott KB, Buckner RL, Raichle ME, Cohen NJ, Ollinger JM, Akbudak E, Conturo TE, Snyder AZ, Petersen SE (1998) Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20:927–936

    PubMed  CAS  Google Scholar 

  • Kohler S, Moscovitch M, Winocur G, Houle S, Mcintosh AR (1998) Networks of domain-specific and general regions involved in episodic memory for spatial location and object identity. Neuropsychologia 36:129–142

    PubMed  CAS  Google Scholar 

  • Kojima S, Goldman-Rakic PS (1982) Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 248:43–49

    PubMed  CAS  Google Scholar 

  • Kowalska DM, Bachevalier J, Mishkin M (1991) The role of the inferior prefrontal convexity in performance of delayed non-matching-to-sample. Neuropsychologia 29:583–600

    PubMed  CAS  Google Scholar 

  • Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34:337–347

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Szwarcbart MK, Mishkin M, Rosvald HE (1965) Occipitotemporal corticocortical connections in the rhesus monkey. Exp Neurol 11:245–262

    PubMed  CAS  Google Scholar 

  • Levy R, Goldman-Rakic PS (1999) Association of storage and processing function in the dorsolateral prefrontal cortex of the nonhuman primate. J Neurosci 19:5149–5158

    PubMed  CAS  Google Scholar 

  • McCarthy G, Puce A, Constable RT, Krystal JH, Gore JC, Goldman-Rakic PS (1996) Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cereb Cortex 6:600–611

    PubMed  CAS  Google Scholar 

  • Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N (1977) Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136:393–414

    PubMed  CAS  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M (1997) Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 35:999–1015

    PubMed  CAS  Google Scholar 

  • Miller EK (1999) The prefrontal cortex: complex neural properties for complex behavior. Neuron 22:15–17

    PubMed  CAS  Google Scholar 

  • Miller EK, Li L, Desimone R (1991) A neural mechanism for working and recognition memory in inferior temporal cortex. Science 254:1377–1379

    PubMed  CAS  Google Scholar 

  • Miller EK, Li L, Desimone R (1993) Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13:1460–1478

    PubMed  CAS  Google Scholar 

  • Mishkin M (1964) Perseverations of central sets after frontal lesions in monkeys. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. MacGraw-Hill, New York, pp 219–241

    Google Scholar 

  • Mishkin M, Manning FJ (1978) Non-spatial memory after selective prefrontal lesions in monkeys. Brain Res 143:313–323

    PubMed  CAS  Google Scholar 

  • Mishkin M, Pribram KH (1955) Analysis of the effects of frontal lesions in object alternation. J Comp Physiol Psychol 48:492–495

    PubMed  CAS  Google Scholar 

  • Mishkin M, Vest B, Waxier M, Rosvold HE (1969) A re-examination of the effects of frontal lesion on object alternation. Neuropsychologia 7:357–363

    Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1997) Areal segregation of face-processing neurons in prefrontal cortex. Science 278:1135–1138

    Google Scholar 

  • O’Scalaidhe SP, Wilson FAW, Goldman-Rakic PS (1999) Face-selective neurons during passive viewing and working memory performance of rhesus monkeys: evidence for intrinsic specialization of neuronal coding. Cereb Cortex 9:459–475

    Google Scholar 

  • Owen AM (1997) Tuning in to the temporal dynamics of brain activation using functional magnetic resonance imaging (fMRI). Trends Cogn Sci 1:123–125

    PubMed  CAS  Google Scholar 

  • Owen AM, Evans AC, Petrides M (1996a) Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study. Cereb Cortex 6:31–38

    PubMed  CAS  Google Scholar 

  • Owen AM, Doyon J, Petrides M, Evans AC (1996b) Planning and spatial working memory: a positron emission tomography study in humans. Eur J Neurosci 8:353–367

    PubMed  CAS  Google Scholar 

  • Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532

    PubMed  CAS  Google Scholar 

  • Owen AM, Stern CE, Look RB, Tracey I, Rosen BR, Petrides M (1998) Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci USA 95:7721–7726

    PubMed  CAS  Google Scholar 

  • Owen AM, Herrod NJ, Menon DK, Clark JC, Downey SP, Carpenter TA, Minhas PS, Turkheimer FE, Williams EJ, Robbins TW, Sahakian BJ, Petrides M, Pickard JD (1999) Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci 11:567–574

    PubMed  CAS  Google Scholar 

  • Passingham RE (1975) Delayed matching after selective prefrontal cortex lesions in monkeys (Macaca mulatto). Brain Res 92:89–102

    PubMed  CAS  Google Scholar 

  • Passingham RE (1985) Memory of monkeys (Macaca mulatto) with lesions in prefrontal cortex. Behav Neurosci 99:3–21

    PubMed  CAS  Google Scholar 

  • Perret DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342

    Google Scholar 

  • Petrides M (1995) Impairments on nonspatial self-ordered and externally ordered working memory tasks after lesions of the mid-dorsal part of the lateral frontal cortex in the monkey. J Neurosci 15:359–375

    PubMed  CAS  Google Scholar 

  • Petrides M, Milner B (1982) Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20:249–262

    PubMed  CAS  Google Scholar 

  • Petrides M, Pandya DN (1984) Projection to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228:105–116

    PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Evans AC, Meyer E (1993a) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 90:873–877

    PubMed  CAS  Google Scholar 

  • Petrides M, Alivisatos B, Meyer E, Evans AC (1993b) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882

    PubMed  CAS  Google Scholar 

  • Pohl W (1973) Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J Comp Physiol Psychol 82:227–239

    PubMed  CAS  Google Scholar 

  • Quintana J, Fuster JM (1993) Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. Cereb Cortex 3:122–132

    PubMed  CAS  Google Scholar 

  • Quintana J, Yajeya J, Fuster JM (1988) Prefrontal representation of stimulus attributes during delay tasks. I. Unit activity in cross-temporal integration of sensory and sensory-motor information. Brain Res 474:211–221

    PubMed  CAS  Google Scholar 

  • Rainer G, Asaad WF, Miller EK (1998) Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393:577–579

    PubMed  CAS  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    PubMed  CAS  Google Scholar 

  • Rodman HR, O’Scalaidhe SP, Gross CG (1993) Response properties of neurons in the temporal cortical visual areas of infant monkeys. J Neurophysiol 70:1115–1136

    PubMed  CAS  Google Scholar 

  • Romanski LM, Goldman-Rakic PS (1999) Physiological identification of an auditory domain in the prefrontal cortex of the awake behaving monkey. Soc Neurosci Abstr 25:620.1

    Google Scholar 

  • Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:470–473

    PubMed  CAS  Google Scholar 

  • Rushworth ME Nixon PD, Eacott MJ, Passingham RE (1997) Ventral prefrontal cortex is not essential for working memory. J Neurosci 17:4829–4838

    PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    PubMed  CAS  Google Scholar 

  • Seltzer B, Pandya DN (1989) Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 281:97–113

    PubMed  CAS  Google Scholar 

  • Shallice T (1982) Specific impairments of planning. Philos Trans R Soc Lond B Biol Sci 298:199–209

    PubMed  CAS  Google Scholar 

  • Shindy WW, Posley KA, Fuster JM (1994) Reversible deficit in haptic delay tasks from cooling prefrontal cortex. Cereb Cortex 4:443–450

    PubMed  CAS  Google Scholar 

  • Shiwa T (1987) Corticocortical projections to the monkey temporal lobe with particular reference to the visual processing pathway. Arch Ital Biol 125:139–154

    PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J, Koeppe RA, Awh E, Schumacher E, Minoshima S (1995) Spatial vs. object working memory: PET investigations. J Cogn Neurosci 7:337–358

    Google Scholar 

  • Smith EE, Jonides J, Koeppe RA (1996) Dissociating verbal and spatial working memory using PET. Cereb Cortex 6:11–20

    PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J, Marshuetz C, Koeppe RA (1998) Components of verbal working memory: evidence from neuroimag-ing. Proc Natl Acad Sci USA 95:876–882

    PubMed  CAS  Google Scholar 

  • Stamm JS, Rosen SC (1973) The locus and crucial time of implication of prefrontal cortex in delayed response tasks. In: Pibram HK, Luria AR (eds) Psychophysiology of the frontal lobes. Academic Press, New York, pp 139–153

    Google Scholar 

  • Tanila H, Carlson S, Linnankoski I, Lindroos F, Kahila H (1992) Functional properties of dorsolateral prefrontal cortical neurons in awake monkey. Behav Brain Res 47:169–180

    PubMed  CAS  Google Scholar 

  • Tanila H, Carlson S, Linnankoski I, Kahila H (1993) Regional distribution of functions in dorsolateral prefrontal cortex of the monkey. Behav Brain Res 53:63–71

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Gaffan D, Pelak VS (1989) Projections from inferior temporal cortex to prefrontal cortex via the uncinate fascicle in rhesus monkey. Exp Brain Res 76:473–484

    PubMed  CAS  Google Scholar 

  • Ungerleider LG, Courtney SM, Haxby JV (1998) A neural system for human visual working memory. Proc Natl Acad Sci USA 95:883–890

    PubMed  CAS  Google Scholar 

  • Walker AE (1940) A cytoarchitectural study of the prefrontal area of the macaque monkey. J Comp Neurol 73:59–86

    Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382:629–632

    PubMed  CAS  Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 5:470–483

    Google Scholar 

  • Wexler BE, Stevens AA, Bowers AA, Sernyak MJ, Goldman-Rakic PS (1998) Word and tone working memory deficits in schizophrenia. Arch Gen Psychiatry 55:1093–1096

    PubMed  CAS  Google Scholar 

  • Williams GV, Goldman-Rakic PS (1995) Blockade of dopamine D1 receptors enhances memory fields of prefrontal neurons in primate cerebral cortex. Nature 376:572–575

    PubMed  CAS  Google Scholar 

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS (1993) Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260:1955–1958

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this chapter

Cite this chapter

Levy, R., Goldman-Rakic, P.S. (2000). Segregation of working memory functions within the dorsolateral prefrontal cortex. In: Schneider, W.X., Owen, A.M., Duncan, J. (eds) Executive Control and the Frontal Lobe: Current Issues. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59794-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59794-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64128-2

  • Online ISBN: 978-3-642-59794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics