Advertisement

Three-Way Partial Correlation Measures

  • Donatella Vicari
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

Analysis of linear relations between variables, given a third one, can be investigated for three-way three-mode data, by defining new measures of linear dependence between occasions. In this paper, two partial correlation coefficients between matrices are proposed. Their properties are analyzed, in particular with respect to the absence of conditional linear dependence.

Keywords

Partial Correlation Conditional Independence Matrix Norm Pearson Linear Correlation Marginal Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DAUDIN, J.J. (1979): Coefficient de Tschuprow partiel et independence conditionnelle. Statistique et Analyse des Données, 3, 55–58.Google Scholar
  2. DRAPER, N.R. and SMITH, H. (1966): Applied Regression Analysis. Wiley.Google Scholar
  3. CRAMÈR, E.M. and NICEWANDER, W.A. (1979): Some symmetric, invariant measures of multivariate association. Psychometrika, 44, 43–54.CrossRefGoogle Scholar
  4. ESCOUFIER, Y. (1986): A propos du choix des variables en analyse des données. Metron, 44, 31–47.Google Scholar
  5. SAPORTA, G. (1976): Quelques applications des opérateurs d’Escoufier au traitement des variables qualitatives. Bulletin de l’Association des Statisticiens Universitaires, 38–46.Google Scholar
  6. VICARI, D. (1994): Misure di correlazione parziale generalizzata. Statistica, 54, 491–499.Google Scholar
  7. VICHI, M. (1989): La connessione e la correlazione tra due matrici dei dati componenti una matrice a tre indici. Statistica, 49, 225–243Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Donatella Vicari
    • 1
  1. 1.Dipartimento di Statistica, Probabilità e Statistiche ApplicateUniversità di Roma “La Sapienza”Italy

Personalised recommendations