Advertisement

Estimating Missing Values in a Tree Distance

  • A. Guénoche
  • S. Grandcolas
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

In phylogeny, one tries to approximate a given dissimilarity by a tree distance. In some cases, especially when comparing biological sequences, some dissimilarity values cannot be evaluated and a partial dissimilarity with undefined values is only available. In that case one can develop a sequential method to reconstruct a weighted tree or to evaluate the missing values using a tree model. In this paper we study the latter approach and measure the quality of the estimated values using simulated noisy tree distances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BARTHÉLÉMY J.R, GUÉNOCHE A., (1991): Trees and Proximity Representations, J. Wiley.Google Scholar
  2. BUNEMAN P., (1971): The recovery of trees from measures of dissimilarity: 387-395, in Mathematics in Archaeological and Historical Sciences, F.H. Hodson, D.G. Kendall, P. Tautu (Eds.), Edinburg University Press.Google Scholar
  3. DE SOETE G., (1984): Ultrametric tree representations of incomplete dissimilarity data, J. of Classification, 1: 235–242.CrossRefGoogle Scholar
  4. GUÉNOCHE A., GRANDCOLAS S., (1999): Approximation par arbre d’une distance partielle, Mathématiques, Informatique et Sciences humaines, 146: 51–64.Google Scholar
  5. HEIN J.J., (1989): An optimal algorithm to reconstruct trees from additive distance data, Bulletin of Mathematical Biology 51 (5): 597–603.Google Scholar
  6. LAPOINTE F.J., KIRSCH J.A.W., (1996): Estimating phylogenies from lacunose distances matrices: Additive is superior to Ultrametric estimation, Mol. Biol. Evol., 13(6): 266–284.Google Scholar
  7. LECLERC B., MAKARENKOV V., (1998): On some relations between 2-trees and tree metrics, Discrete Math., 192.Google Scholar
  8. ROBINSON D.R., FOULDS L.R., (1981): Comparison of phylogenetic trees, Mathematical Biosciences, 53: 131–147.CrossRefGoogle Scholar
  9. SAITOU N., NEI M., (1987): The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol., 4: 406–425.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • A. Guénoche
    • 1
  • S. Grandcolas
    • 1
  1. 1.IML, LIMMarseilleFrance

Personalised recommendations