Advertisement

Comparison of Ultrametrics Obtained With Real Data, Using the PL and VALAw Coefficients

  • Isabel Pinto Doria
  • Georges Le Calvé
  • Helena Bacelar-Nicolau
Conference paper
Part of the Studies in Classification, Data Analysis, and Knowledge Organization book series (STUDIES CLASS)

Abstract

We compare 20 ultrametric matrices generated by the classifications obtained from 20 similarity indices for binary variables on the same group of data, that were studied by Hubálek (1982). To measure the similarity between the ultrametric matrices we use the P L coefficient proposed by Le Calvé (1977) and the Validity of Affinity Coefficient WW, VAL Aw proposed by Bacelar-Nicolau (1988). By means of hierarchical cluster analysis and principal component analysis on the similarity matrices obtained with those two coefficients, we draw conclusions about the 20 similarity indices and compare results for P L and VAL Aw coefficients. The results obtained with these two coefficients are very similar and are also similar to the results obtained by Hubálek. Finally we introduce in this ultrametrics/coefficients comparative study the simple matching coefficient, Sokal and Michener (1958), and observe, using P L or VAL Aw coefficients, its particular behaviour in relation to the other indices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BACELAR-NICOLAU, H. (1972): Analyse d’un Algorithme de Classification. Thèse de Sème Cycle, Univ. Pierre et Marie Curie, Paris.Google Scholar
  2. BACELAR-NICOLAU, H. (1988): Two Probabilistic Models for Classification of Variables in Frequency Tables. In: H.-H. Bock (Ed.): Classification and Related Methods of Data Analysis. Elsevier Sciences, Publishers B.V., North Holland, 181–186.Google Scholar
  3. DORIA, I., LE CALVÉ, G., and BACELAR-NICOLAU, H. (1999): Comparing Several Similarity Indices On Dichotomies Based on The Associated Ultrametrics Obtained With Real Data. In: H. Bacelar-Nicolau, F. Costa Nicolau, J. Janssen (Eds.): Applied Stochastic Models and Data Analysis. Quantitative Methods in Business and Industry Society. INE, Lisboa, 142–147.Google Scholar
  4. HUBÁLEK, Z. (1982): Coefficients of Association and Similarity Based on Binary(Presence-Absence) Data: an Evaluation. Biolog. Rev., 57, 669–689.CrossRefGoogle Scholar
  5. LE CALVÉ, G. (1977): Un Indice de Similarité pour des Variables de Type Quelconque. Revue Statistique et Analyse des Données, juin.Google Scholar
  6. LERMAN, I.C. (1970): Sur l’Analyse des Données Préalable à une Classification Automatique - Proposition d’une Nouvelle Mesure de Similarité. Mathématiques et Sciences Humaines, 32, 5–15.Google Scholar
  7. LERMAN, I.C. (1972): Étude Distributionelle de Statistiques de Proximité entre Structures Algébriques Finies du Même Type; Application à la Classification Automatique. Cahiers du B.U.R.O., 19.Google Scholar
  8. SOKAL, R.R. and MICHENER, C.D. (1958): A Statistical Method for Evaluating Systematic Relationships. The University of Kansas Scientific Bulletin, 38, 1409–1438.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Isabel Pinto Doria
    • 1
    • 2
  • Georges Le Calvé
    • 3
  • Helena Bacelar-Nicolau
    • 1
  1. 1.LEAD, Faculdade de Psicologia e de Ciências da EducaçãoUniversity of LisbonLisbonPortugal
  2. 2.Escola Superior de Tecnologia da Saúde de LisboaLisbonPortugal
  3. 3.Université de Rennes IIRennesFrance

Personalised recommendations