Skip to main content

The Surgical Correction of Scoliosis with Shape-Memory Metal

  • Chapter
Book cover Shape Memory Implants

Abstract

Because of its unique properties, shape memory metal (NiTi) can be put to excellent use in a device for the surgical correction of scoliosis [4, 37, 38, 52-54, 59]. Before such a device may be applied clinically (after being developed), it should meet two important criteria: biocompatibility and biofunctionality [11, 66]. Biocompatibility relates to the ability of the device to remain biologically nontoxic during the implantation period and biofunctionality refers to the ability of the device to perform the purpose for which it is designed. In this chapter both aspects of a new scoliosis correction system, based on shape memory metal are discussed [53,59].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen G (1980) A clinical trial of alignment of teeth using 0.019-inch thermal nitinol wire with transitional temperature range between 31°C and 45°C. Am J Orthod 78:528–537

    Article  PubMed  CAS  Google Scholar 

  2. Arkin AM (1950) The mechanism of rotation in combination with lateral deviation in the normal spine. J Bone Joint Surg A 32:180–188

    Google Scholar 

  3. Asher MA, Strippgen WE, Heinig CF, Carson WL (1994) Isola instrumentation. In: Weinstein SL (ed) The pediatric spine: principles and practice. Raven, New York, pp 1619–1659

    Google Scholar 

  4. Baumgart F, Bensmann G, Haasters J, Nolker A, Schlegel KF (1978) Zur Dwyerschen Scoliosenoperation mittels drahten aus memory-legierungen. Eine experimentelle studie. Arch Orthop Trauma Surg 10:67–75

    Article  Google Scholar 

  5. Bensman G, Baumgart F, Haaster J (1982) Osteosyntheseklammern aus nickel titan: Herstellung, versuche und klinischer einsatz. Tech Mitt Forsch Berl 40:123–134

    Google Scholar 

  6. Bischoff R, Bennett JT, Stuecker R, Davis JM, Whitecloud TS (1993) The use of Texas Scottish-Rite instrumentation in idiopathic scoliosis. A preliminary report. Spine 18:2452–2456

    Article  PubMed  CAS  Google Scholar 

  7. Brooks HL, Azen SP, Gerberg E, Brooks R, Chan L (1975) Scoliosis: a prospective epidemiological study. J Bone Joint Surg A 57:968–972

    CAS  Google Scholar 

  8. Buehler WJ, Wang FE (1968) A summary of recent research on nitinol alloys and their potential application. Ocean Eng 1:105

    Article  Google Scholar 

  9. Bunnell WP (1988) The natural history of idiopathic scoliosis. Clin Orthop 229:20–25

    PubMed  Google Scholar 

  10. Callen BW, Lowenberg BF, Lugowski S, Sodhi RN, Davies JE (1995) Nitric acid passivation of Ti6Al4V reduces thickness of surface oxide layer and increases trace element release. J Biomed Mater Res 29:279–290

    Article  PubMed  CAS  Google Scholar 

  11. Castleman LS, Motzkin SM (1981) The biocompatibility of nitinol. In: Williams DF (ed) Biocompatibility of clinical implant materials. CRC, Boca Raton, pp 129–154

    Google Scholar 

  12. Coillard C, Rivard CH (1996) Vertebral deformities in scoliosis. Eur Spine J 5:91–100

    Article  PubMed  CAS  Google Scholar 

  13. Cotrel Y, Dubousset J (1984) Nouvelle technique d’osteosynthese rachidienne segmentaire par voie posterieure. Rev Chir Orthop 70:489–495

    PubMed  CAS  Google Scholar 

  14. Cotrel Y, Dubousset J (1988) New universal instrumentation in spinal surgery. Clin Orthop 227:10–23

    PubMed  CAS  Google Scholar 

  15. Cragg AH, DeJong SC, Barnhart WH, Landas SK, Smith TP (1993) Nitinol intra vascular stent: results of preclinical evaluation. Radiology 189:775–778

    PubMed  CAS  Google Scholar 

  16. Deacon P, Archer IA, Dickson RA (1987) The anatomy of spinal deformity: a biomechanical analysis. Orthopedics 10:897–903

    PubMed  CAS  Google Scholar 

  17. Dubousset J, Herring JA, Shufflebarger H (1989) The crankshaft phenomenon. J Pediatr Orthop 9:541–550

    Article  PubMed  CAS  Google Scholar 

  18. Dwyer AF, Newton NC, Sherwood AA (1969) An anterior approach to scoliosis. A preliminaryreport. Clin Orthop 62:192–202

    PubMed  CAS  Google Scholar 

  19. Ecker ML, Betz RR, Trent PS, Mahboubi S, Mesgarzadeh M, Bonakdapour A, Drummond DS, Clancy M (1988) Computer tomography evaluation of Cotrel Dubousset instrumentation in idiopathic scoliosis. Spine 13:1141–1144

    Article  PubMed  CAS  Google Scholar 

  20. Hanawa T, Ota M(1992) Characterization of surface film formed on titanium in electrolyte using XPS. Appl Surface Sci 55:269–276

    Article  CAS  Google Scholar 

  21. Harrington PR (1962) Treatment of scoliosis: correction and internal fixation by spine instrumentation. J Bone Joint Surg A 44:591–610

    Google Scholar 

  22. Healy KE, Ducheyne P (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res 26:319–338

    Article  PubMed  CAS  Google Scholar 

  23. Herzenberg JE, Waanders NA, Closkey RF, Schultz AB, Hensinger RN (1989) Cobb angle versus spinous process angle in adolescent idiopathic scoliosis. The relationship of the anterior and posterior deformities. Spine 15:874–879

    Article  Google Scholar 

  24. ISO 10993/EN 30993 (1992) Biological evaluation of medical devices. Part 1: guidance on selection of tests 1992. International Organization for Standardization, Geneva

    Google Scholar 

  25. ISO 10993/EN 30993 (1992) Biological evaluation of medical devices. Part 3: tests for genotoxicity, carcinogenicity and reproductive toxicity. International Organization for Standardization, Geneva

    Google Scholar 

  26. ISO 10993/EN 30993 (1992) Biological evaluation of medical devices. Part 5: tests for cytotoxicity: in vitro methods. International Organization for Standardization, Geneva 27. ISO 10993/EN 30993 (1995) Biological evaluation of medical devices. Part 10: tests for irritation and sensitization. International Organization for Standardization, Geneva

    Google Scholar 

  27. Jarvis JG, Ashman RB, Johnston CE, Herring JA (1987) The posterior tether in scoliosis. Clin Orthop 227:126–134

    Google Scholar 

  28. Kambic H, Sutton C, Oku T, Sugita Y, Murabayashi S, Harasaki H, Kasick J, Shirey E, Nose Y (1988) Biological performance of TiNi shape memory alloy vascular ring protheses: a two-year study. Int J Artif Organs 11:487–492

    PubMed  CAS  Google Scholar 

  29. Kaneda K, Shono Y, Satoh S, Abumi K (1997) Anterior correction of thoracic scoliosis with Kaneda anterior spinal system. A preliminary report. Spine 22:1358–1368

    Article  PubMed  CAS  Google Scholar 

  30. Klein JA, Hukins DWL (1983) Functional differentiation in the spinal column. Eng Med 12:83–85

    Article  PubMed  CAS  Google Scholar 

  31. Labelle H, Dansereau J, Bellefleur C, Poitras B, Rivard CH, Stokes IA, deGuise J (1995) Comparison between preoperative and postoperative three-dimensional reconstructions of idiopathic scoliosis with the Contrel-Dubousset procedure. Spine 20:2487–2492

    Article  PubMed  CAS  Google Scholar 

  32. Langenskiold A, Michelsson JE (1961) Experimental progressive scoliosis in the rabbit. J Bone Joint Surg B 43:116–120

    Google Scholar 

  33. Lausmaa J, Kasemo B (1990) Surface spectroscopic characterization of titanium implant materials. Appl Surface Sci 44:133–146

    Article  CAS  Google Scholar 

  34. Lenke LG, Bridwell KH, Blanke K, Baldus C, Weston J (1998) Radiographic results of arthrodesis with Cotrel-Dubousset instrumentation for the treatment of adolescent idiopathic scoliosis. A five- to ten-year follow-up study. J Bone Joint Surg A 80:807–814

    CAS  Google Scholar 

  35. Lonstein JE, Carlson JM (1984) The prediction of curve progression in untreated idiopathic scoliosis during growth. J Bone Joint Surg A 66:1061–1071

    CAS  Google Scholar 

  36. Lu S (1990) Medical applications of Ni-Ti alloys in China. In: Duerig TW, Melton KN, Stockel CM, Wayman CM (eds) Engineering aspects of shape memory alloys. Butterworth-Heineman, London, pp 445–451

    Google Scholar 

  37. Matsumoto K, Tajima N, Kuwahara S (1993) Correction of scoliosis with shape-memory alloy. J Jpn Orthop Assoc 67:267–274

    CAS  Google Scholar 

  38. Meyer GH (1966) Die Mechanik der Skoliose. Arch Pathol Anat Physiol Klin Med 35:15–253

    Google Scholar 

  39. Murray DW, Bulstrode CJ (1996) The development of idiopathic scoliosis. Eur Spine J 5:251–257

    Article  PubMed  CAS  Google Scholar 

  40. Nachemson AL (1966) The load on lumbar discs in different positions of the body. Clin Orthop 45:107

    PubMed  CAS  Google Scholar 

  41. Nachemson AL (1981) Disc pressure measurements. Spine 6:93–97

    Article  PubMed  CAS  Google Scholar 

  42. Nachemson AL, Elfström G (1971) Intravital wireless telemetry of axial forces in Harrington rods in patients with idiopathic scoliosis. J Bone Joint Surg A 53:445–465

    CAS  Google Scholar 

  43. Nijenbanning G (1998) Scoliosis redress. Design of a force controlled orthosis. Thesis. University of Twente, Twente

    Google Scholar 

  44. Oda I, Abumi K, Lü D, Shono Y, Kaneda K (1996) Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine 21:1423–1429

    Article  PubMed  CAS  Google Scholar 

  45. Panjabi MM (1992) The stabilizing system of the spine. Part 1. Function, dysfunction, adaptation and enhancement. J Spinal Disord 5:383–389

    Article  PubMed  CAS  Google Scholar 

  46. Prince MR, Salzman EW, Schoen FJ, Palestrant AM, Simon M (1988) Local intravascular effects of the nitinol blood clot filter. Invest Radiol 23:249–300

    Article  Google Scholar 

  47. Roaf R (1958) Rotation movements of the spine with special reference to scoliosis. J Bone Joint Surg B 40:312–332

    Google Scholar 

  48. Roaf R (1960) Vertebral growth and its mechanical control. J Bone Joint Surg B 42:40–59

    Google Scholar 

  49. Rogala EJ, Drummond DS, Gurr J (1978) Scoliosis: incidence and natural history. A prospective epidemiological study. J Bone Joint Surg A 60:173–176

    CAS  Google Scholar 

  50. Sanders JO, Little DG, Richards BS (1997) Prediction of the crankshaft phenomenon by peak height velocity. Spine 22:1352–1355

    Article  PubMed  CAS  Google Scholar 

  51. Sanders JO, Sanders AE, More R, Ashman RB (1993) A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine 18:1640–1646

    Article  PubMed  CAS  Google Scholar 

  52. Sanders MM (1993) A memory metal based scoliosis correction system. Ph.D. thesis. University of Twente, Twente

    Google Scholar 

  53. Schmerling MA, Wilkow MA, Sanders AE, Woosley JE (1976) Using the shape recovery of Nitinol in the Harrington rod treatment of scoliosis. J Biomed Mater Res 10:879–892

    Article  PubMed  CAS  Google Scholar 

  54. Simon M, Athanasoulis CA, Kim D, Steinberg FL, Porter DH, Byse BH, Kleshinsky S, Geller S, Orron DE, Waltman AC (1989) Simon nitinol inferior vena cava filter: initial clinical experience. Work in progress. Radiology 172:99–103

    PubMed  CAS  Google Scholar 

  55. Stokes I A, Ronchetti PJ, Aronsson DD (1994) Changes in shape of the adolescent idiopathic scoliosis curve after surgical correction. Spine 19:1032–1037

    Article  PubMed  CAS  Google Scholar 

  56. Thompson GH, Wilber RG, Shaffer JW, Scoles PV, Nash CL Jr (1985) Segmental spinal instrumentation in idiopathic scoliosis. A preliminary report. Spine 10:623–630

    Article  PubMed  CAS  Google Scholar 

  57. Thulbourne T, Gillespie R (1976) The rib hump in idiopathic scoliosis. Measurement, analysis and response to treatment. J Bone Joint Surg B 58:64–71

    CAS  Google Scholar 

  58. Veldhuizen AG, Sanders MM, Cool JC (1997) A scoliosis correction device based on memory metal. Med Eng Phys 19:171–179

    Article  PubMed  CAS  Google Scholar 

  59. Vieweg U, VanRoost D, Wolf HK, Schyma CA, Schramm J (1999) Corrosion on an internal spinal fixator system. Spine 24:946–951

    Article  PubMed  CAS  Google Scholar 

  60. Wang JC, Yu WD, Sandhu HS, Betts F, Bhuta S, Delamarter RB (1999) Metal debris from titanium spinal implants. Spine 24:899–903

    Article  PubMed  CAS  Google Scholar 

  61. Wever DJ, Veldhuizen AG, Klein JP, Webb PJ, Nijenbanning G, Cool JC, VanHorn JR (1999) A biomechanical analysis of the vertebral and rib deformities in structural scoliosis. Eur Spine J 8:252–260

    Article  PubMed  CAS  Google Scholar 

  62. Wever DJ, Veldhuizen AG, Sanders MM, Schakenraad JM, VanHorn JR (1997) Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials 18:1115–1120

    Article  PubMed  CAS  Google Scholar 

  63. Wever DJ, Veldhuizen AG, DeVries J, Busscher HJ, Uges DRA, VanHorn JR (1998) Electrochemical and surface characterization of a nickel-titanium alloy. Biomaterials 19:761–769

    Article  PubMed  CAS  Google Scholar 

  64. White AA, Panjabi MM (1990) Clinical biomechanics of the spine. Lippincott, Philadelphia

    Google Scholar 

  65. Williams DF (1982) Corrosion of orthopaedic implants. In: Williams DF (ed) Biocompatibility of orthopaedic implants. CRC, Boca Raton, pp 197–229

    Google Scholar 

  66. Zielke K, Stunkat R, Beeaujean F (1976) Ventrae derotations spondylodese. Arch Orthop Unfallchirurg 85:257–277

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wever, D.J., Veldhuizen, A.G. (2000). The Surgical Correction of Scoliosis with Shape-Memory Metal. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics