Skip to main content

Physical and Biochemical Principles of the Application of TiNi-Based Alloys as Shape-Memory Implants

  • Chapter
Shape Memory Implants

Abstract

For medical treatment of various diseases and traumas, there is a wide distribution of the metallic, ceramic and polymer applications for the realization of different functions in living organisms. Such constructions are being called implants. Materials for medical implants (biomaterials) need to satisfy three important demands, i.e. (1) - the reliability of the mechanical functions, (2) chemical reliabilities - the resistance to deterioration of their properties in a biological medium, the resistance to expansion, dissolution, corrosion, and (3) biological reliabilities - biological compatibility, lack of toxicity and carcinogenicity, resistance to the formation of thrombus and antigens [1]. Biomaterials should be non-toxic during the implanted period in the body and, simultaneously, have rather high physical-mechanical characteristics. Because of these rigorous demands, only the following three metallic materials have been qualified to be available as implant materials, i.e. Fe-Cr-Ni, Co-Cr and Ti-Al-V [2]. However, shape memory alloys have been recently introduced to medicine, since they have unique functions such as shape memory effect, superelasticity and damping capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hagemeister N, Yahia L’H, Weynant E, Lours T (1995) Fatigue life of superelastic springs for an anterior cruciate ligament prosthesis. J Phys IV France 5:1223–1228

    Article  CAS  Google Scholar 

  2. Miyazaki S (1998) Medical and dental applications of shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University, Cambridge, pp 267–282

    Google Scholar 

  3. Kornilov II, Belousov OK, Kachur EV (1977) Nickel titanium and others shape memory alloys. Nauka, Moscow

    Google Scholar 

  4. Likhachev VA, Kuzmin SL, Kamentseva ZP (1987) Shape memory effect. Leningrad State University, Leningrad

    Google Scholar 

  5. Khachin VN, Pushin VG, Kondrat’ev VV (1992) Nickel titanium: structure and properties. Nauka, Moscow

    Google Scholar 

  6. Pushin VG, Kondrat’ev VV, Khachin VN, et al. (1998) Pretransitional phenomena and martensitic transformations. Russian Academy of Science, Ekaterinburg

    Google Scholar 

  7. Gunter VE, Kotenko W, Mirgazizov MZ (1986) Shape memory alloys in medicine. Tomsk State University, Tomsk

    Google Scholar 

  8. Gunter VE, Itin VI (1992) Shape memory effects and their medical applications. Nayka, Novosibirsk

    Google Scholar 

  9. Otsuka K, Shimizu K, Suzuki Y (1990) Shape memory alloys. Metallurgy, Moscow, pp 183–209

    Google Scholar 

  10. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University, Cambridge

    Google Scholar 

  11. Khachin VN, Voronin VP, Sivokha VP, Pushin VG (1995) Martensitic transformation and shape memory effect in polycomponent TiNi-based alloys. J Physique France 8:765–769

    Google Scholar 

  12. Sawinov AS, Sivokha VP, Khachin VN (1983) Martensitic transformation in Ti05Ni(0 5_x)Fex. Izv VUZov SSSR (Fiz) 7:34–38

    Google Scholar 

  13. Khachin VN (1989) Martensitic transformation and shape memory effect in B2 intermetallic compounds of titanium. Rev Phys Appl 24:733–739

    CAS  Google Scholar 

  14. Khachin VN, Matveeva NM, Sivokha VP (1981) High-temperature SME in TiNi-TiPd alloys. Dokladi Akademii Nauk SSSR 257(1)167–169

    CAS  Google Scholar 

  15. Sivokha VP, Khachin VN (1986) Martensitic transformation and shape memory effect in TiNi-TiAu alloys. Fiz Met Metalloved 62:534–540

    CAS  Google Scholar 

  16. Tokarev VN, Sawinov AS, Khachin VN (1983) Shape memory effects causing by martensitic transformation in TiNi-TiCu alloys. Fiz Met Metalloved 56:341–344

    Google Scholar 

  17. Meisner LL, Sivokha VP (1996) Crystal lattice deformation under B2—>B19’ martensitic transformations in Ni50Ti(50_x)Zrx. Fiz Met Metalloved 81:158–164

    CAS  Google Scholar 

  18. Meisner LL, Sivokha VP, Perevalova OB (1998) Formation features of fine structure of the Ni50Ti40Zr10 alloy under different thermal treatment. Physica B 262:49–54

    Article  Google Scholar 

  19. Meisner LL, Sivokha VP (1999) Martensitic transformations in the TiNi-TiZr alloys. Fizika metallov i mtallovedenie. Russian, 88,6,59–62

    CAS  Google Scholar 

  20. Meisner LL, Sivokha VP, Sharkeev Yu.P, Kulkov SN, Gritsenko BP (2000) Plastic deformation and fracture of the ion-implanted Ni50Ti40Zrl0 alloy on meso- and macro-levels. Journal of Technical Physics. Russian, 70,1,32–36

    Google Scholar 

  21. Lotkov AI, Grishkov VN, Kuznetsov AV, Kulkov SN (1983) TiNi aging and its effect on the start temperature of the martensitic transformation. Phys Stat Sol 75:373–377

    Article  CAS  Google Scholar 

  22. Lotkov AI, Grishkov VN (1985) Nickel titanium. Crystal structure and phase transformation. Izv VUZov SSSR (Fiz) 5:68–87

    Google Scholar 

  23. Khachin VN, Gyunter VE, Sivokha VP, Sawinov AS (1979) Lattice instability, martensitic transformations, plasticity and anelasticity of TiNi. In: Proceedings of the International Conference on Martensitic Transformations (ICOMAT-79), Cambridge, Massachusetts, USA. 24-29 June. Vol 5. pp 474-480

    Google Scholar 

  24. VanHumbeck J, Stalmans R (1998) Characteristics of shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University, Cambridge, pp 149–183

    Google Scholar 

  25. Saburi T (1998) Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University, Cambridge, pp 49–96

    Google Scholar 

  26. Shabolovskaya SA (1995) Biological aspects of TiNi alloy surfaces. J Phys IV France 5:1199–1204

    Article  Google Scholar 

  27. Tomashov ND, Ustinskaja TN, Chukalovskaja TV (1983) Electrochemical and corrosive behaviour of Ti2Ni and TiNi intermetallic compounds in neutral and acid sulfate solutions. Zashchita metallov 19:584–586

    CAS  Google Scholar 

  28. Mamileecheena MV, Romanushkina AE (1978) Corrosion of titanium, Ti-Ni and Ti-Pd alloys into ZnCl2 solution. Zashchita metallov 14:172–175

    Google Scholar 

  29. Stepanova TP, Krasnojarskii VV, Tomashov ND, Druzhinina IP (1978) Influence of Ni-content in Ti-based alloys on their anodal bechaviour in riverine water. Zashchita metallov 14:169–171

    Google Scholar 

  30. Kossiy GG, Trusov GN, Goncharenko BA, Micheev VS (1978) Corrosive and electrochemical characteristics of Ti-Ni intermetallic compounds in acid solutions. Zashchita metallov 14:662–666

    Google Scholar 

  31. Tomashov ND, Chukalovskaja TV, Chernova GP (1972). Influence of Ru, Rh, Os, Ir elements on corrosion behavior of TiNi-based alloys. Zashchita metallov 8:549–552

    CAS  Google Scholar 

  32. Tomashov ND, Kazarin VI, Micheev VS, Goncharenko BA (1976) Influence of the platinum group elements on corrosion behavior of Ti-Ni alloys. Zashchita metallov 12:268

    Google Scholar 

  33. Marshakov IK (1971) Rust protection of titanium-based alloys. In: Itogi nauki. Korroziya i zashchita ot korroziy. Moscow, VINITY Press, 1

    Google Scholar 

  34. Nevitt MV (1966) Electronic structure of transition metals and chemistry of their alloys. Metallurgy, Moscow, p 97

    Google Scholar 

  35. Gunter VE, Dambaev GT (1998) Medical shape memory materials and implants. Tomsk State University, Tomsk

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meisner, L.L., Sivokha, V.P. (2000). Physical and Biochemical Principles of the Application of TiNi-Based Alloys as Shape-Memory Implants. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics