Skip to main content

The High Damping Capacity of Shape Memory Alloys

  • Chapter
Shape Memory Implants

Abstract

The ability of damping out rapidly mechanical vibrations or noise created by impact loading is considered as an important and useful material property. Materials that can fulfil this condition are qualified as high damping materials. Especially metallic materials belonging to this group are classified as “hidamets” (high damping metals).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeBatist R (1983) High damping materials: mechanisms and applications. J Phys France 44(Suppl 12)39

    Google Scholar 

  2. VanHumbeeck J (1985) The high damping capacity of martensitic copper-zinc-aluminium alloys. In: Rath BB, Misra MS(eds) Proceedings of the International Symposium on the Role of Interfaces in Material Damping. American Society for Metals,Materials Park, p 59

    Google Scholar 

  3. VanHumbeeck J (1984) Internal friction in shape memory alloys showing a thermo-elastic martensitic transformation. In: Garczyca S, Magalas LB (eds) Proceedings of the Summer School on Internal Friction in Solids, Wydawnictwo AGH, Krakow, p 131

    Google Scholar 

  4. Van Humbeeck J (1989) Internal friction in shape memory alloys. In: Ke TS (ed) Proceedings of ICIFUAS-9, Beijing, June 17-20, 1989. Pergamon, New York, p 337

    Google Scholar 

  5. DeBatist R (1992) Mechanical energy dissipation related with martensitic transformation processes. In: Kinra VK, Wolfenden A (eds) Proceedings on the Mechanics and Mechanisms of Material Damping. American Society for Testing and Materials, Philadelphia, p 45

    Google Scholar 

  6. Clarebrough LM (1957) Internal friction of p-brass. Acta Metallica 5:413

    Article  CAS  Google Scholar 

  7. Ghilarducci A, Ahlers M (1980) Internal friction in quenched a-phase Cu-Zn and Cu-Zn-Al alloys. Scripta Metallurgica 14:1341

    Article  CAS  Google Scholar 

  8. Ghilarducci A, Ahlers M (1983) Internal friction and point defects in ordered p Cu-Zn and (3 Cu-Zn-Al. J Phys France Metal Phys. 13:1757

    Article  CAS  Google Scholar 

  9. VanHumbeeck J, Delaey L (1983) The internal friction behaviour of martensitic Cu-Zn-Al alloys. J Phys France 44(Suppl 12)217

    Google Scholar 

  10. Bidaux JE, Schaller R, Benoit W (1989) Study of the hpc-fcc phase transition in cobalt by acoustic measurements. Acta Metallica 37:803

    Article  CAS  Google Scholar 

  11. VanHumbeeck J, Stoiber J, Delaey L, Gotthardt R (1995) The high damping capacity of shape memory alloys. Z Metallkunde 86:177

    Google Scholar 

  12. Perez-Saez RB, Recarte V, No ML, San Juan J (1988) Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations. Phys Rev B 57:5684

    Article  Google Scholar 

  13. Mercier O, Melton KN, DePreville Y (1979) Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi. Acta Metallica 27:1467–1475

    Article  CAS  Google Scholar 

  14. VanHumbeeck J (1996) Damping properties of shape memory alloys during phase transformation. Proceedings of ICIFUAS-96. J Phys IV France 6:371

    Google Scholar 

  15. Kustov S, Golyandin S, Sapozhnikov K, VanHumbeeck J, DeBatist R (1998) Low-temperature anomalies in Young’s modulus and internal friction of Cu-Al-Ni single crystals. Acta Mater 46:5117

    Article  CAS  Google Scholar 

  16. Vandeurzen U (1982) Identification of damping in materials and structures-optimization of dinamyc behaviour- of mechanical structures. Ph.D. thesis. Leuven University, Leuven

    Google Scholar 

  17. Van Humbeeck J (1983) Studie en optimalisatie van de dempingseigenschappen van martensietische Koper-zink-aluminium legeringen. Ph.D. thesis. Leuven University, Leuven

    Google Scholar 

  18. Morin M, Guenin G (1983) Etude du frottement interieur dvun alliage a transformation martensitique thermoelastique dans le Cu-Zn-Al. J Phys France 44:247

    Google Scholar 

  19. Koshimizu S, Mondino M, Benoit W (1979) Internal friction measurements during martensitic transformation in Cu-Zn-Al alloys at kHz frequencies. Proceedings of the ECIFUAS-3. Manchester, p 269

    Google Scholar 

  20. Granato A, Lücke K (1956) Theory of mechanical damping due to dislocations. II. Application of dislocation theory to internal friction phenomena at high frequencies. J Appl Phys 27:583

    Google Scholar 

  21. Zhu J-S, Wang Y-N, Shen H-M (1983) Ultrasonic study on martensitic transformation in Au-Cd alloy. J Phys France 44:235

    Article  Google Scholar 

  22. Mercier O, Török E, Tirbonod B (1979) Internal friction peaks associated with the martensitic phase transformation of NiTi and NiTiCu alloys. Proceedings of Icomat. Massachusetts Institute of Technology, Cambridge, p 702

    Google Scholar 

  23. Tirbonod B, Koshimizu S (1981) Dislocation relaxation in the martensitic phase of the thermoelastic NiTi and NiTiCu alloys. J Phys France 42:1043

    Google Scholar 

  24. Sugimoto K, Mori T, Otsuka K, Shimizu K (1974) Simultaneous measurements of internal friction, Young’s modulus and shape change associated with thermoelastic martensite transformation in Cu-Al-Ni single crystals. Scripta Metallurgica 8:1341

    Article  CAS  Google Scholar 

  25. Suzuki K, Nakanishi N, Mitani H (1980) Effects of cooling rates on internal friction in Cu-Al-Ni ternary alloys. Japanese Institute of Metals, Vol. 44, p. 43

    Google Scholar 

  26. Dejonghe W, Delaey L, DeBatist R, VanHumbeeck J (1977) Temperature and amplitude- dependence of internal friction in Cu-Zn-Al. Metal Sci 11:523

    Article  CAS  Google Scholar 

  27. Burdett CF, Queen TJ (1979) The role of dislocations in damping. Metals Rev 4:44

    Google Scholar 

  28. Peguin P, Perez J, Gobin PF (1967) Amplitude-dependent part of the internal friction of aluminium. Metals Trans Am Inst Mining Metallurgical Petroleum Eng 239:438

    CAS  Google Scholar 

  29. Kajiwara S, Kikuchi T (1982) Dislocation structures produced by reverse martensitic transformation in a Cu-Zn alloy. Acta Metallica 30:589

    Article  CAS  Google Scholar 

  30. Morin M, Guenin G, Gobin PF (1981) Internal friction measurements related to the two way memory effect in Cu-Zn-Al alloy exhibiting thermoelastic martensitic transformation. J Phys France 42:1013

    Google Scholar 

  31. VanHumbeeck J, Delaey L (1984) The influence of heat-treatment on the internal friction of Cu-Zn-Al martensite. Part II. The peaking effect. Z. Metallkunde 75:760

    Google Scholar 

  32. Morin M, Vincent A, Guenin G (1985) Internal friction time dependence of Cu-Zn-Al martensite. Proceedings of the International Conference on Internal Friction and Ultrasonic Attenuation in Solids (ICIFUAS-8). J Phys France 46:625

    Article  Google Scholar 

  33. VanHumbeeck J, Hulsbosch J, Delaey L, DeBatist R (1985) The influence ageing in the martensite phase on the internal friction in Cu-Zn-Al alloys. Proceedings International Conference on Internal Friction and Ultrasonic Attenuation in Solids (ICIFUAS-8). J Phys France 46:633

    Google Scholar 

  34. Ilczuk J, Delaey L, VanHumbeeck J (1987) The influence of martensite stabilisation on changes in dislocation density in Cu-Zn-Al alloys. Proceedings European Conference on Internal Friction and Ultrasonic Attenuation in Solids (ECIFUAS-5). J Phys France 48:553

    Article  Google Scholar 

  35. Morin M, Haouriki M, Guenin G (1987) Study of the Cu-Zn-Al martensite ageing by internal friction measurements. Proceedings European Conference on Internal Friction and Ultrasonic Attenuation in Solids (ECIFUAS-5). J Phys France 48:567

    Google Scholar 

  36. VanHumbeeck J, Delaey L (1982) The evolution of the damping characteristics of Cu-Zn-Al martensitic alloys with time and temperature: the peaking effect. J Phys France 43:691

    Article  Google Scholar 

  37. Simpson H M, Sosin A, Johnson DF (1972) Contribution of the defect dragging to dislocation damping. Phys Rev B 5:1382

    Article  Google Scholar 

  38. Hasiguti R R, Iwasaki K (1968) Internal friction and related properties of the NiTi intermetallic compound. J Appl Phys 59:2182

    Article  Google Scholar 

  39. Postnikov VS, Lebedinskiy VS, Yevsyokov VA, Sharshakov IM, Pesin MS (1970) Phase transformations in the intermetallic compound TiNi. Fiz Metallov 29:364

    CAS  Google Scholar 

  40. Liu Y, Van Humbeeck J (1997) On the damping behavior of NiTi shape memory alloy, presented in ESOMAT-97, July 1 -5 1997, the Netherlands. J Physique IV France, p 519

    Google Scholar 

  41. Liu Y, VanHumbeeck J, Stalmans R, Delaey L (1997) Some aspects of the properties of NiTi shape memory alloys. J Alloys Compounds 247:115

    Article  CAS  Google Scholar 

  42. Xie ZL, Liu Y, VanHumbeeck J (1988) Microstructure of NiTi shape memory alloy due to tensioncompression cyclic deformation. Acta Materialia 46:1989–2000

    Article  Google Scholar 

  43. Liu Y, Xie ZL, VanHumbeeck J, Delaey L(1998) Asymmetry of stress-strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia 46:4325

    Article  CAS  Google Scholar 

  44. BRITE-MANSIDE Project. Memory alloys for new seismic isolation and energy dissipation devices. Contract No. BRPR-CT95-0031. (1995-1999)

    Google Scholar 

  45. Aiken ID, Nims KD, Whittaker AS, James MK, M. EERI (1993) Testing of passive energy dissipation systems. Earthquake Spectra 9:335

    Article  Google Scholar 

  46. Graesser EJ, Cozzarelli FA (1991) Shape memory alloys as new materials for aseismic isolation. J Eng Mech 117:2590–2608

    Article  Google Scholar 

  47. Wittig PR, Cozzarelli FA (1993) Design and seismic testing of shape memory structural dampers. In: Proceedings of Damping 1993, San Francisco

    Google Scholar 

  48. Graesser EJ, Cozzarelli FA (1994) Effects of intrinsic damping on vibration transmissibility of Ni-Ti shape memory alloy springs. Metal Mater Trans A 26:2791

    Article  Google Scholar 

  49. Hodgson DE, Krumme RC (1994) Damping in structural applications. In: Pelton AR, et al. (eds) Proceedings of the 1st International Conference on Shape Memory and Superelastic Technologies, California 7-10 March 1994. Shape Memory and Superelastic Technologies, Pacific Grove, pp 371–376

    Google Scholar 

  50. Wittig PR, Cozzarelli FA (1992) Shape memory structural dampers: materials properties, design and seismic testing. Technical report NCEER-92-0013. State University of New York, Buffalo

    Google Scholar 

  51. Whittaker SA, Krumme R, Hayses Jr R (1995) Structural control of building response using shape memory alloys. Technical report TR 95/22. US Army Construction Engineering Research Laboratories, Washington

    Google Scholar 

  52. VanHumbeeck J, Delaey L (1981) The influence of strain rate, amplitude and temperature on the hysteresis loop described during the pseudoelastic deformation of a Cu-Zn-Al crystal. J Phys France 42 (Suppl 10)1007–1011

    Google Scholar 

  53. Saburi T (1998) Ti-Ni shape memory alloys. In: Otsuka K, Wayman CM (eds) Shape memory materials. Cambridge University, Cambridge

    Google Scholar 

  54. . Saburi T (1998) Structure and mechanical behaviour of Ti-Ni shape memory alloys. In: Shape memory materials (Proceedings Materials Research Society International Meeting on Advanced Materials, Tokyo, vol 9) Materials Research Society, Pittsburgh, pp 77–91

    Google Scholar 

  55. VanHumbeeck J (1991) Cycling effects, fatigue and degradation of shape memory alloys. J Phys IV France 1:189–197

    Google Scholar 

  56. Dauskardt RH, Duerig TW, Ritchie RO (1989) Effects of in situ phase transformation on fatiguecrack propagation in Ti-Ni shape memory alloys. In: Shape memory materials. (Proceedings Materials Research Society International Meeting on Advanced Materials, Tokyo, vol 9) Materials Research Society, Pittsburgh, pp 243–249

    Google Scholar 

  57. Brachet J-C, Olier P, Brun G, Wident P, Tournie I, Faucher C, Dubuisson P (1997) Superelasticity and impact properties of two way shape memory alloys: Ti50Ni50 and Ti50Ni48Fe2. Journal de Physique, IV, Colloque C5, Suppl. J. de Phys. Ill, pp C5-561-566

    Google Scholar 

  58. Scherrer P, Bidaux J-E, Kim A, Manson JAE, Gotthardt R Passive vibration damping in an alpine by integration of shape memory alloys. Accepted for publication in J Phys IV, France 9, 1999, Pr 9-393-400

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Humbeeck, J., Liu, Y. (2000). The High Damping Capacity of Shape Memory Alloys. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics