Skip to main content

Effects of Surface Modification Induced by Sterilization Processes on the Thrombogenicity of Nickel-Titanium Stents

  • Chapter
Shape Memory Implants

Abstract

Based on promising reports from international randomized trials such as BENESTENT, vascular stent implantation has been increasingly used - with more than 500,000 implantations per year worldwide - and has become a procedure of choice in the treatment of atherosclerotic vascular disease [1,2]. Since the first implantation in 1986, many devices, mostly balloon expandable stainless steel stents, have been approved by regulatory agencies, for both peripheral and coronary revascularization. In the early 90’s, many studies have reported experimental temporary or permanent use of NiTi stents [3,4]. Due to the thermoelastic properties of the alloy, optimal deployment of NiTi self expanding stents can be easily achieved with high expansion ratio and less longitudinal shortening than most common stainless steel devices. In addition, their flexibility and radiopacity along with their good biocompatibility and resistance to corrosion have contributed to their increasing use in cardiovascular applications [5-7]. Despite its good biocompatibility, like all metallic materials NiTi is prone to adsorption of plasma protein such as fibrinogen, which is a potent promoter of platelet adhesion [8]. In a recent study, Makkar et al. have shown that surface topography significantly affects the thrombogenicity of NiTi stents, which may in turn have an effect on complications observed much after implantation [9]. Indeed, platelets adhesion is the first step of thrombus formation which may lead to acute and sub-acute thrombosis. Stent thrombosis still represents a major complication after stent implantation, especially for small vessels, thrombus containing lesions and bifurcation stenoses [10]. Moreover, through the release of growth factor by activated platelets, thrombus formation is expected to participate to the restenosis process initiation [11]. Many strategies have been developed to reduce stents thrombogenicity such as improvement of surface characteristics or coating with pharmacological drugs and polymers [9,12,13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serruys PW, DeJaegere P, Kiemeneiji F, et al. (1994) A comparison of balloon expendable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331:489–495

    Article  PubMed  CAS  Google Scholar 

  2. Holmes DR, Bell MR, Holmes DR, et al. (1997) Interventional cardiology and intracoronary stents. A changing practice: approved vs. nonapproved indications. Cathet Cardiovasc Diagn 40:133–138

    Article  PubMed  Google Scholar 

  3. Sutton CS, Tominaga R, Harasaki H, Emoto H, Oku T, et al. (1990) Vascular stenting in normal and atherosclerotic rabbit: studies of the intravascular endoprothesis of titanium-nickel alloy. Circulation 81:667–683

    Article  PubMed  CAS  Google Scholar 

  4. Carter AJ, Scott D, Laird JR, Bailey L, Kovach JA, Hoopes TG, et al. (1998) Progressive vascular remodeling and reduced neointimal formation after placement of a thermoelastic self-expanding Nitinol stent in an experimental model. Cathet Cardiovasc Diagn 44:193–201

    Article  PubMed  CAS  Google Scholar 

  5. Henry M, Amor M, Beyar R, Henry I, Porte JM, Mentre B, et al. (1996) Clinical experience with a new nitinol self-expanding stent in peripheral arteries. J Endovasc Surg 3:369–379

    Article  PubMed  CAS  Google Scholar 

  6. Sheth S, Litvack F, Dev V, Fishbein MC, Forrester JS, Eigler N (1996) Subacute thrombosis and vascular injury resulting from slotted-tube Nitinol and stainless steel stents in a rabbit carotid artery model. Circulation 94:1733–1740

    PubMed  CAS  Google Scholar 

  7. Rechavia E, Fishbien MC, DeFrance T, Nakamura M, Parikh A, Litvack F, Eigler N (1997) Temporary arterial stenting: comparison to permanent stenting and conventional ballon injury in a rabbit carotid artery model. Cathet Cardiovasc Diagn 41:85–92

    Article  PubMed  CAS  Google Scholar 

  8. Horbett TA (1994) The role of adsorbed proteins in animal cell adhesion, colloids and surfaces. Biointerfaces 2:225–236

    Article  CAS  Google Scholar 

  9. Makkar RR, Kaul S, Nakamura M, Dev V, Litvack FI, (1995) Park Modulation of acute stent thrombosis by metal surface characteristics and shear rate. Circulation 92:1–86

    Google Scholar 

  10. Keane D, Azar AJ, Serruys PW, Macaya C, Rutsch W, Sigwart U, Comlombo A, Marco J, Klugmann S, Crean P (1995) On behalf of the BENESTENT investigators. Outcome following elective stent implantation in small coronary arteries. Eur Heart J 16:335

    Google Scholar 

  11. Komatsu R, Ueda M, Naruko T, Kojima A, Becker AE (1998) Neointimal tissue responses at sites of coronary stenting in humans - Macroscopic, histological and immunohistochemical analyses. Circulation 98:224–233

    PubMed  CAS  Google Scholar 

  12. DeScheerder I, Verbeken E, VanHumbeeck J (1998) Metallic surface modification. Semin Interv Cardiol 3:139–144

    Article  PubMed  Google Scholar 

  13. Schurmann K, Vorwerk D, Bucker A, Neuerburg J, Klosterhalfen B, Gunther RW, et al. (1997) Perigraft inflammation due to Dacron-covered stents grafts in sheep iliac arteries: Correlation of MIR imaging and histopathologic findings. Radiology 204:757–763

    PubMed  CAS  Google Scholar 

  14. Makar RR, Eigler NL, Kaul S, Frimerman A, Nakamura M, Shah PK, Forrester JS, Hebert J-M, Litvack F (1998) Effects of clopidogrel, aspirin and combined therapy in a porcine ex vivo model of high-shear induced stent thromobosis. Eur Heart J 10:1538–1546

    Article  Google Scholar 

  15. Rogers C, Edelman ER (1995) Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001

    PubMed  CAS  Google Scholar 

  16. Siegerstetter V, Krause T, Haag K, Ochs A, Hauenstein K-H, Moser HE (1997) Transjugular intrahepatic portosystemic shunt (TIPS) thrombogenicity in stents and its effects on shunt patency. Acta Radiol 38:558–564

    PubMed  CAS  Google Scholar 

  17. Thierry B, Tabrizian M, Savadogo O, Yahia L’H (2000) Effects of sterilisation processes on NiTi alloy: surface characterizations. J Biomed Mater Res 49:88–98

    Article  PubMed  CAS  Google Scholar 

  18. Shabalovskaya S, Andereeg J (1995) Surface spectroscopic characterization of NiTi equiatomic shape memory alloys for implants. J Vacuum Sci Technol A 13:5

    Article  Google Scholar 

  19. Armitage DA, Grant DM, Parker TL, Parker KG (1997) Haemocompatibility of surface modified NiTi. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp: 411–416

    Google Scholar 

  20. Sutton CS, Consigny PM, Thakur M (1994) Thrombogenicity of intravascular stent wires. Circulation 90(Suppl I)1–9

    Google Scholar 

  21. Hanson SR, Sakariassen KS (1998) Blood flow and anti-thrombotic drug effects. Am Heart J 135:S132–S145

    Article  PubMed  CAS  Google Scholar 

  22. Merhi Y, King M, Guidoin R (1997) Acute thrombogenicity of intact and injured natural blood conduits versus synthetic conduits: neutrophil, platelet, and fibrin(ogen) adsorption under various shear-rate conditions. J Biomed Mater Res 34:477–485

    Article  PubMed  CAS  Google Scholar 

  23. Hanson SR, Sakariassen KS (1998) Blood flow and antithrombotic drug effects. Am Heart J 135:S132–S145

    Article  PubMed  CAS  Google Scholar 

  24. Baurschmidt P, Schaldach M (1977) The electrochemical aspects of the thrombogenicity of a material. J Bioeng 1:261–278

    Google Scholar 

  25. Nan H, Ping Y, Xuan C, Yongxuan L, Xiaolan Z, Guangjun C, et al. (1998) Blood compatibility of amorphous titanium oxide films synthetized by ion beam enhanced deposition. Biomaterials 19:771–776

    Article  PubMed  CAS  Google Scholar 

  26. Palma VEDE, Baier RE (1972) Investigation of three-surface properties of several metals and their relation to blood biocompatibility. J Biomed Mat Res 3:37–75

    Google Scholar 

  27. Nygren H, Erikson C, Lausma J (1997) Adhesion and activation of platelets and polymorphonuclear granulocyte cells at Ti02 surfaces. J Lab Clin Med 129:35–46

    Article  PubMed  CAS  Google Scholar 

  28. Hehrlein C, Zimmermann M, Metz J, Ensinger W, Kübler W (1995) Influence of surface texture and charge on the biocompatibility of endovascular stents. Coron Artery Dis 6:581–586

    PubMed  CAS  Google Scholar 

  29. Rogers CR, Edelman ER (1995) Endovascular stent design dictates experimental restenosis and thrombosis. Circulation 91:2995–3001

    PubMed  CAS  Google Scholar 

  30. Goldberg SL, DiMario C, Hall P, Colombo A (1998) Comparison of aggressive versus nonaggressive balloon dilatation for stent deployment on late loss and restenosis in native coronary arteries. Am J Cardiol 81:708–712

    Article  PubMed  CAS  Google Scholar 

  31. The EPIC investigators (1994) Use of a monoclonal antibody directed against glycoprotein Ilb/IIIa receptor in high-risk coronary angioplasty. New Engl J Med 3330:956–961

    Google Scholar 

  32. The EPILOG investigators (1997) Platelet glycoprotein Ilb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. New Engl J Med 336:1689–1696

    Article  Google Scholar 

  33. Schomig A, Neumann FJ, Kastrati A, et al. (1996) A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. New Engl J Med 334: 1084–1089

    Article  PubMed  CAS  Google Scholar 

  34. Leon M, Baim D, Popma J, et al. (1998) A clinical trial comparing three anti-thrombotic drug regimens after coronary-artery stenting. Stent Anticoagulation Restenosis Study Investigators. New Engl J Med 339:1665–1671

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thierry, B., Tabrizian, M., Merhi, Y., Bilodeau, L., Savadogo, O., Yahia, L. (2000). Effects of Surface Modification Induced by Sterilization Processes on the Thrombogenicity of Nickel-Titanium Stents. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics