Skip to main content

NiTi Alloys in Orthodontics

  • Chapter
Shape Memory Implants
  • 574 Accesses

Abstract

In orthodontics, we are moving teeth within the bone in order to bring the teeth into a good functional position and alignment. Therefore, we are using a fixed appliance technique. In orthodontic-fixed appliance therapy, the physical properties of the materials play an important role in the application of force to the teeth. To move teeth, we are using different wire materials with different elasticity modules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen GF, Hillemann TB (1971) An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics. J Am Dent Assoc 82:1373–1375

    PubMed  CAS  Google Scholar 

  2. Bantleon H-P, Droschl H (1985) Kraftabgabe von Loops bei Verwendung unterschiedlicher Loophöhen und Drahtqualitäten. Fortschr Kieferorthop 46:471–484

    Article  PubMed  CAS  Google Scholar 

  3. Bustone ChJ, Baldwin JJ, Lawless DT (1961) The application of continuous force to Orthodontics. Angle Orthod 31:1–14

    Google Scholar 

  4. Faltin RM, Arana-Chavez VE, Faltin K, Sander FG, Wichelhaus A (1998) Root resorptions in upper first premolars after application of continuous intrusive forces (intra-individual study). J Orofac Orthop 59:208–219

    Article  PubMed  CAS  Google Scholar 

  5. Jarabak JR (1960) Development of a treatment plan in the light of one’s concept of treatment objectives. Am J Orthod 46:481–514

    Article  Google Scholar 

  6. Knox J, Jones M, Durning P (1993) An ideal preformed arch wire. Br J Orthod 20:65–70

    PubMed  CAS  Google Scholar 

  7. Kusy RP (1981) Comparison of nickel-titanium and beta titanium wire sizes to conventional orthodontic archwire materials. Am J Orthod 79:625–629

    Article  PubMed  CAS  Google Scholar 

  8. Kusy RP, Greenberg AR (1982) Comparison of the elastic properties of nickel-titanium and b-titanium archwires. Am J Orthod 82:199–205

    Article  PubMed  CAS  Google Scholar 

  9. Kusy RP, Stevens LE (1987) Triple-stranded stainless steel wires - evaluation of mechanical properties and comparison with titanium alloy alternatives. Angle Orthod 48:18–32

    Google Scholar 

  10. Lane DE, Nikolai RJ (1980) Effects of stress relief of the mechanical properties of orthodontic wire loops. Angle Orthod 50:139–145

    PubMed  CAS  Google Scholar 

  11. Miura F, Mogi M, Ohura Y, Hamanaka H (1986) The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod 90:1–10

    CAS  Google Scholar 

  12. Miura F, Mogi M, Ohura Y (1988) Japanese NiTi alloy wire: use of the direct electric resistance heat treatment method. Am J Orthod 10:187–191

    CAS  Google Scholar 

  13. Okamoto Y, Hamanaka H, Miura F, Tamura H, Horikawa H (1988) Reversible changes in yield stress and transformation temperature of a NiTi alloy by alternate heat treatments. Scripta Metallurgica 22:517–520

    Article  CAS  Google Scholar 

  14. Sander FG, Wichelhaus A (1995) Clinical experiences with the torque-segmented archwire (TSA). J Orofac Orthop 56:194–201

    CAS  Google Scholar 

  15. Sander FG, Wichelhaus A (1995) Clinical application of the new NiTi-SE-steel uprighting spring. J Orofac Orthop 56:296–308

    CAS  Google Scholar 

  16. Sander FG (1990) Eigenschaften superelastischer Drahte und deren Beeinflussung. Inf Orthod Kieferorthop 4:501–514

    Google Scholar 

  17. Thier M, Kubla G, Drescher D, Bourauel C (1991) NiTi wires for orthodontic application. J Phys IV France Vol 1, coll C4, suppl III n° 11:181-186

    Google Scholar 

  18. Wichelhaus A, Sander FG(1994) The behaviour of superelastic wires in the elastic and plastic range in dependence upon temperature-treatment. Kieferorthop Mitt 8:95–106

    Google Scholar 

  19. Wichelhaus A, Sander FG (1995) Biomechanical evaluation of the new torque-segmented archwire (TSA). J Orofac Orthop 56:224–235

    CAS  Google Scholar 

  20. Wichelhaus A, Sander FG (1995) Development and test of a new NiTi-SE-steel uprighting spring. J Orofac Orthop 56:283–295

    CAS  Google Scholar 

  21. Wichelhaus A, Sander FG, Hempowitz H (1997) The transformational behaviour of wires in the elastic and plastic range in dependence upon temperature-treatment. In: Pelton AR, Hodgson D, Russell SM, Duerig TW (eds) Proceedings of SMST 1997. Shape Memory and Superelastic Technologies, Pacific Grove, pp 449–454

    Google Scholar 

  22. Wichelhaus A (1996) Die Entwicklung und klinische Anwendung superelastischer Bogen und Teilbogen in der Kieferorthopadie. Habilitation

    Google Scholar 

  23. Wichelhaus A, Sander FG (1996) Anwendung des Compound-Retraktionsbogens. Inf Orthod Kieferorthop 3:407–424

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wichelhaus, A. (2000). NiTi Alloys in Orthodontics. In: Yahia, L. (eds) Shape Memory Implants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59768-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59768-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64118-3

  • Online ISBN: 978-3-642-59768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics