Skip to main content

The Transmission of Contractility Through Cell Adhesion

  • Chapter
Signaling Through the Cell Matrix

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 25))

Abstract

Living cells generate active tension within their internal cytoskeleton and exert on the adhesive sites with extra cellular matrix (ECM). This mechanical linkage is necessary not only for supporting the cell shape or position, but also for cell migration. (Harris, Stopak et a1.1981; Sheetz 1994; Lauffenburger and Horwitz 1996; Mitchison and Cramer 1996) Furthermore, it is becoming clear that the internal stress field of the cell, resulting from the balancing of generation and exertion forces, can influence a number of cellular functions, including growth, differentiation, apoptosis, and signal tranduction (reviewed in Shyy and Chien 1997; Chicurel et al.1997). Cells are also interconnected with neighboring cells and transmitting forces to their neighbors. These mechanical interactions between groups of cells and the ECM, which joins these cells together, are important in tissue structure maintenance, physiological organ function, morphogenesis, and wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora PD, McCulloch CA (1994) Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 159: 161 – 175

    PubMed  CAS  Google Scholar 

  • Arora PD, Narani N, McCulloch CA (1999) The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 154: 871 – 882

    PubMed  CAS  Google Scholar 

  • Asaga H, Kikuchi S,Yoshizato K (1991) Collagen gel contraction by fibroblasts requires cellular fibronectin but not plasma fibronectin. Exp Cell Res 193: 167 – 174

    PubMed  CAS  Google Scholar 

  • Baker LP, Daggett DF, Peng HB (1994) Concentration of pp 125 focal adhesion kinase (FAK) at the myotendinous junction. J Cell Sci 107: 1485 – 1497

    PubMed  CAS  Google Scholar 

  • Baudoin C, Goumans MJ, Mummery C, Sonnenberg A (1998) Knockout and knockin of the betal exon D define distinct roles for integrin splice variants in heart function and embryonic development. Genes Dev 12: 1202 – 1216

    PubMed  CAS  Google Scholar 

  • Belkin AM, Ornatsky OI, Glukhova MA, Koteliansky VE (1988) Immunolocalization of metavinculin in human smooth and cardiac muscles. J Cell Biol 107: 545 – 553

    PubMed  CAS  Google Scholar 

  • Belkin AM, Retta SF, Pletjushkina OY, Balzac F, Silengo L, Fassler R, Koteliansky VE, Burridge K, Tarone G (1997) Muscle beta 1D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 139: 1583 – 1595

    PubMed  CAS  Google Scholar 

  • Belkin AM, Smalheiser NR (1996) Localization of cranin (dystroglycan) at sites of cell-matrix and cell-cell contact: recruitment to focal adhesions is dependent upon extracellular ligands. Cell Adhes Commun 4: 281 – 296

    PubMed  CAS  Google Scholar 

  • Belkin AM, Zhidkova NI, Balzac F, Altruda F, Tomatis D, Maier A, Tarone G, Koteliansky VE, Burridge K (1996) Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at functional structures and signaling potential in nonmuscle cells. J Cell Biol 132: 211 – 226

    PubMed  CAS  Google Scholar 

  • Belkin AM, Zhidkova NI, Koteliansky VE (1986) Localization of talin in skeletal and cardiac muscles. FEBS Lett 200: 32 – 36

    PubMed  CAS  Google Scholar 

  • Bershadsky A, Chausovsky A, Becker E, Lyubimova A, Geiger B (1996) Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr Biol 6: 1279 – 1289

    PubMed  CAS  Google Scholar 

  • Berthier C, Blaineau S (1997) Supramolecular organization of the subsarcolemmal cytoskeleton of adult skeletal muscle fibers. A review. Biol Cell 89: 413 – 434

    PubMed  CAS  Google Scholar 

  • Bozyczko D, Decker C, Muschler J, Horwitz AF (1989) Integrin on developing and adult skeletal muscle. Exp Cell Res 183: 72 – 91

    PubMed  CAS  Google Scholar 

  • Brancaccio M, Cabodi S, Belkin AM, Collo G, Koteliansky VE, Tomatis D, Altruda F, Silengo L, Tarone G (1998) Differential onset of expression of alpha 7 and beta 1D integrins during mouse heart and skeletal muscle development. Cell Adhes Commun 5: 193 – 205

    PubMed  CAS  Google Scholar 

  • Burgess ML, Carver WE, Terracio L, Wilson SP, Wilson MA, Borg TK (1994) Integrin-mediated collagen gel contraction by cardiac fibroblasts. Effects of angiotensin II. Circ Res 74: 291 – 298

    PubMed  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Ann Rev Cell Dev Biol 12: 463 – 518

    CAS  Google Scholar 

  • Burridge K, Turner CE, Romer LH (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J Cell Biol 119: 893 – 903

    PubMed  CAS  Google Scholar 

  • Byers TJ, Kunkel LM, Watkins SC (1991) The subcellular distribution of dystrophin in mouse skeletal, cardiac and smooth muscle. J Cell Bio1115: 411 – 421

    Google Scholar 

  • Campbell KP (1995) Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80: 675 – 679

    PubMed  CAS  Google Scholar 

  • Carpenter S, Karpati G, Zubrzycka-Gaarn E, Bulman DE, Ray PN, Worton RG (1990) Dystrophin is localized to the plasma membrane of human skeletal muscle fibers by electron-microscopic cytochemical study. Muscle Nerve 13: 376 – 380

    PubMed  CAS  Google Scholar 

  • Carver W Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69: 116 – 122

    PubMed  CAS  Google Scholar 

  • Carver W, Molano I, Reaves TA, Borg TK, Terracio L (1995) Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 165: 425 – 437

    PubMed  CAS  Google Scholar 

  • Chicurel ME, Chen CS Ingber DE (1997) Cellular control lies in the balance of forces. Curr Opin Cell Biol 10: 232 – 239

    Google Scholar 

  • Chiquet-Ehrismann R, Tannheimer M, Koch M, Brunner A, Spring J, Martin D, Baumgartner S, Chiquet M (1994) Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol 127: 2093 – 2101

    PubMed  CAS  Google Scholar 

  • Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88: 39 – 48

    PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1994) Tyrosine phosphorylation is involved in reorganization of the actin cytoskeleton in response to serum or LPA stimulation. J Cell Sci 107: 3643 – 3654

    PubMed  CAS  Google Scholar 

  • Chrzanowska-Wodnicka M, Burridge K (1996) Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133: 1403 – 1415

    PubMed  CAS  Google Scholar 

  • Craig SW, Pardo JV (1983) Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil 3:449–462 Crowley E, Horwitz AF (1995) Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions. J Cell Biol 131: 525 – 537

    Google Scholar 

  • Danowski BA (1989) Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93: 255 – 266

    PubMed  CAS  Google Scholar 

  • Danowski BA (1998) Microtubule dynamics in serum-starved and serum-stimulated Swiss 3T3 mouse fibroblasts: implications for the relationship between serum-induced contractility and microtubules. Cell Motil Cytoskeleton 40: 1 – 12

    PubMed  CAS  Google Scholar 

  • Danowski BA, Harris AK (1988) Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp Cell Res 177: 47 – 59

    PubMed  CAS  Google Scholar 

  • Danowski BA, Imanaka-Yoshida K, Sanger IM, Sanger IW (1992) Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J Cell Biol 118: 1411 – 1420

    PubMed  CAS  Google Scholar 

  • Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63: 21 – 29

    PubMed  CAS  Google Scholar 

  • Eckes B, Mauch C, Hüppe G, Krieg T (1993) Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett 318: 129 – 133

    PubMed  CAS  Google Scholar 

  • Engvall E, Earwicker D, Haaparanta T, Ruoslahti E, Sanes JR (1990) Distribution and isolation of four laminin variants tissue-restricted distribution of heterotrimers assembled from five different subunits. Cell Regul 1: 731 – 740

    PubMed  CAS  Google Scholar 

  • Enomoto T (1996) Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: Possible involvement of the rho signal cascade. Cell Struct Funct 21: 317 – 326

    PubMed  CAS  Google Scholar 

  • Ezzell RM, Goldmann WH, Wang N, Parasharama N, Ingber DE (1997) Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 231: 14 – 26

    PubMed  CAS  Google Scholar 

  • Flinn HM, Ridley AJ (1996) Rho stimulates tyrosine phosphorylation of focal adhesion kinase, p130 and Paxillin. J Cell Sci 109: 1133 – 1141

    PubMed  CAS  Google Scholar 

  • Franke RP, Gräfe M, Schnittler H, Seiffge D, Mittermayer C, Drenckhahn D (1984) Induction of human vascular endothelial stress fibres by fluid shear stress. Nature 307: 648 – 649

    PubMed  CAS  Google Scholar 

  • Frenette J, Tidball JG (1998) Mechanical loading regulates expression of talin and its mRNA, which are concentrated at myotendinous junctions. Am J Physiol 275: C818 – 825

    PubMed  CAS  Google Scholar 

  • Glass WF2d, Kreisberg JI (1993) Regulation of integrin-mediated adhesion at focal contacts by cyclic AMP. J Cell Physiol 157: 296 – 306

    PubMed  CAS  Google Scholar 

  • Goldmann WH, Galneder R, Ludwig M, Xu W, Adamson ED, Wang N, Ezzell RM (1998) Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp Cell Res 239: 235 – 242

    PubMed  CAS  Google Scholar 

  • Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124: 401 – 404

    PubMed  CAS  Google Scholar 

  • Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274: 918 – 923

    PubMed  CAS  Google Scholar 

  • Gullber D, Tingström A, Thuresson AC, Olsson L, Terracio L, Borg TK, Rubin K (1990) Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF. Exp Cell Res 186: 264 – 272

    Google Scholar 

  • Haddad J, Decker ML, Hsieh LC, Lesch M, Samarel AM, Decker RS (1988) Attachment and maintenance of adult rabbit cardiac myocytes in primary cell culture. Am J Physiol 255: C19 – 27

    PubMed  CAS  Google Scholar 

  • Halliday NL, Tomasek JJ (1995) Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp Cell Res 217: 109 – 117

    PubMed  CAS  Google Scholar 

  • Hamasaki K, Mimura T, Furuya H, Morino N, Yamazaki T, Komuro I, Yazaki Y, Nojima Y (1995) Stretching mesangial cells stimulates tyrosine phosphorylation of focal adhesion kinase pp125FAK. Biochem Biophys Res Commun 212: 544 – 549

    PubMed  CAS  Google Scholar 

  • Harris AK (1994) Locomotion of tissue culture cells considered in relation to ameboid locomotion. Int Rev Cytol 150: 35 – 68

    PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208: 177 – 179

    PubMed  CAS  Google Scholar 

  • Harris AK Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290: 249 – 251

    PubMed  CAS  Google Scholar 

  • Hatamochi A, Aumailley M, Mauch C, Chu ML, Timpl R, Krieg T (1989) Regulation of collagen VI expression in fibroblasts. Effects of cell density, cell-matrix interactions, and chemical transformation. J Biol Chem 264: 3494 – 3499

    PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RHJ, Kunkel LM (1987) DystroPhin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919 – 928

    PubMed  CAS  Google Scholar 

  • Ibraghimov-Beskrovnaya O, Ervasti M, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992) Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696 – 702

    PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida K, Danowski BA, Sanger JM, Sanger JW (1996) Living adult rat cardiomyocytes in culture: evidence for dissociation of costameric distribution of vinculin from costameric distributions of attachments. Cell Motil Cytoskeleton 33: 263 – 275

    PubMed  CAS  Google Scholar 

  • Imanaka-Yoshida K, Enomoto-Iwamoto M, Yoshida T, Sakakura T (1999) Vinculin talin integrin α6ß1 and laminin can serve as components of attachment complex mediating contraction force transmission from cardiomyocytes to extracellular matrix. Cell Motil Cytoskeleton 42: 1 – 11

    PubMed  CAS  Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104: 613 – 627

    PubMed  Google Scholar 

  • Ingber DE (1997) Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 59: 575 – 599

    PubMed  CAS  Google Scholar 

  • Ingber DE, Dike L, Hansen L, Karp S, Liley H, Maniotis A, McNamee H, Mooney D, Plopper G, Sims J 1994 Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int Rev Cytol 150: 173 – 224

    PubMed  CAS  Google Scholar 

  • Jockusch BM, Bubeck P, Giehl K, Kroemker M, Moschner J, Rothkegel M, Rüdiger M, Schlüter K, Stanke G, Winkler (1995) The molecular architecture of focal adhesions. Ann Rev Cell Dev Biol 11: 379 – 416

    CAS  Google Scholar 

  • Johnson RP, Craig SW (1994) An intramolecular association between the head and tail domains of vinculin modulates talin binding. J Biol Chem 269: 12611 – 12619

    PubMed  CAS  Google Scholar 

  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 273: 245 – 248

    PubMed  CAS  Google Scholar 

  • Klein CE, Dressel D, Steinmayer T, Mauch C, Eckes B, Krieg T, Bankert RB, Weber L (1991) Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. J Cell Biol 115: 1427 – 1436

    PubMed  CAS  Google Scholar 

  • Klietsch R, Ervasti M, Arnold W, Campbell KP, Jorgensen AO (1993) Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ Res 72: 349 – 360

    PubMed  CAS  Google Scholar 

  • Koch-Schneidemann S, Gehr P, Rutishauser B, Eppenberger HM (1994) Attachment of adult rat cardiomyocytes (ARC) on laminin and two laminin fragments. J Struct Biol 113: 107 – 116

    PubMed  CAS  Google Scholar 

  • Kolega J (1986) Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol 102: 1400 – 1411

    PubMed  CAS  Google Scholar 

  • Kolodney MS, Elson EL (1995) Contraction due to microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proc Natl Acad Sci USA 92: 10252 – 10256

    PubMed  CAS  Google Scholar 

  • Koteliansky VE, Gneushev GN (1983) Vinculin localization in cardiac muscle. FEBS Lett 159: 158 – 160

    PubMed  CAS  Google Scholar 

  • Lamb NJ, Fernandez A, Conti MA, Adelstein R, Glass DB, Welch WJ, Feramisco JR (1988) Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase. J Cell Biol 106: 1955 – 1971

    PubMed  CAS  Google Scholar 

  • Lambert CA, Soudant EP, Nusgens BV, Lapière CM (1992) Pretranslational regulation of extracellular matrix macromolecules and collagenase expression in fibroblasts by mechanical forces. Lab Invest 66: 444 – 451

    PubMed  CAS  Google Scholar 

  • Lampugnani MG, Giorgi M, Gaboli M, Dejana E Marchisio PC (1990) Endothelial cell motility, integrin receptor clustering, and microfilament organization are inhibited by agents that increase intracellular cAMP. Lab Invest 63: 521 – 531

    PubMed  CAS  Google Scholar 

  • Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84: 359 – 369

    PubMed  CAS  Google Scholar 

  • Lee J, Leonard M, Oliver T, Ishihara A, Jacobson K (1994) Traction forces generated by locomoting keratocytes. J Cell Bio1127: 1957 – 1964

    Google Scholar 

  • Liu BP, Chrzanowska-Wodnicka M, Burridge K (1998) Microtubule depofymerization induces stress fibers, focal adhesions and DNA synthesis via the GTP-binding protein Rho. Cell Adhes Commun 5: 249 – 255

    PubMed  CAS  Google Scholar 

  • Lundgren E, Terracio L MÃ¥rdh S, Borg TK (1985) Extracellular matrix component influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 158: 371 – 381

    PubMed  CAS  Google Scholar 

  • Lundgren E, Gullberg D, Rubin K, Borg TK, Terracio M, Terracio L (1988) In vitro studies on cardiac myocytes: Attachment and biosynthesis of collagen type IV and laminin. J Cell Physiol 136: 43 – 53

    PubMed  CAS  Google Scholar 

  • Maeda M, Holder E, Lowes B, Valent S, Bies RD (1997) Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95: 17 – 20

    PubMed  CAS  Google Scholar 

  • Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94: 849 – 854

    PubMed  CAS  Google Scholar 

  • Matsumura K, Campbell KP (1994) Dystrophin-glycoprotein complex: its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve 17: 2 – 15

    PubMed  CAS  Google Scholar 

  • Mitchison TJ, Cramer LP (1996) Actin-based cell motility and cell locomotion. Cell 84: 371 – 379

    PubMed  CAS  Google Scholar 

  • Mochitate K, Pawelek P, Grinnell F (1991) Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin and down-regulation of DNA and protein synthesis. Exp Cell Res 193: 198 – 207

    PubMed  CAS  Google Scholar 

  • Murphy-Ullrich JE, Höök M (1989) Thrombospondin modulates focal adhesions in endothelial cells. J Cell Biol 109: 1309 – 1319

    PubMed  CAS  Google Scholar 

  • Murphy-Ullrich JE, Lightner VA, Aukhil I, Yan YZ, Erickson HP, Höök M (1991) Focal adhesion integrity is downregulated by the alternatively spliced domain of human tenascin [published erratum appears in J Cell Biol 1992 Feb;116(3):833]. J Cell Biol 115: 1127 – 1136

    Google Scholar 

  • Murphy-Ullrich JE, Pallero MA, Boerth N, Greenwood JA, Lincoln TM, Cornwell TL (1996) Cyclic GMP-dependent protein kinase is required for thrombospondin and tenascin mediated focal adhesion disassembly. J Cell Sci 109: 2499 – 2508

    PubMed  CAS  Google Scholar 

  • Ohashi T, Kiehart DP, Erickson HP (1999) Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci USA 96: 2153 – 2158

    PubMed  CAS  Google Scholar 

  • Oliver T, Dembo M, Jacobson K (1995) Traction forces in locomoting cells. Cell Motil Cytoskeleton 31: 225 – 240

    PubMed  CAS  Google Scholar 

  • Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M (1998) From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve 21:421–438 Pardo JV, Siliciano JD, Craig SW (1983a) Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97:1081–1088 Pardo JV, Siliciano JD, Craig SW (1983b) A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (costameres) mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci USA 80: 1008 – 1012

    Google Scholar 

  • Petroll WM, Cavanagh HD, Barry P, Andrews P,]ester JV (1993) Quantitative analysis of stress fiber orientation during corneal wound contraction. J Cell Sci 104: 353 – 363

    PubMed  Google Scholar 

  • Racine-Samson L Rockey DC, Bissell DM (1997) The role of alpha1beta1 integrin in wound contraction. A quantitative analysis of liver myofibroblasts in vivo and in primary culture. J Biol Chem 272: 30911 – 30917

    Google Scholar 

  • Riikonen T, Koivisto L, Vihinen P, Heino J (1995) Transforming growth factor-beta regulates collagen gel contraction by increasing alpha 2 beta 1 integrin expression in osteogenic cells. J Biol Chem 270: 376 – 382

    PubMed  CAS  Google Scholar 

  • Schiro JA, Chan BM, Roswit WT, Kassner PD, Pentland AP, Hemler ME, Eisen AZ, Kupper TS (1991) Integrin alpha 2 beta 1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell 67: 403 – 410

    PubMed  CAS  Google Scholar 

  • Schliwa M, Nakamura T, Porter KR, Euteneuer U (1984) A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J Cell Biol 99:1045–1059 Schoenwaelder SM, Burridge K (1999) Bidirectional signaling between the cytoskeleton and integrins. Current Opinion In Cell Biology 11: 274 – 286

    Google Scholar 

  • Seufferlein T, Rozengurt E (1994) Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem 269: 27610 – 27617

    PubMed  CAS  Google Scholar 

  • Shear CR, Bloch R (1985) Vinculin in subsarcolemmal densities in chicken skeletal muscle: localization and relationship to intracellular and extracellular structures. J Cell Biol 101: 240 – 256

    PubMed  CAS  Google Scholar 

  • Sheetz MP (1994) Cell migration by graded attachment to substrates and contraction. Semin Cell Bio15: 149 – 155

    Google Scholar 

  • Shyy JY, Chien S (1997) Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 9: 707 – 713

    PubMed  CAS  Google Scholar 

  • Singer II, Kawka DW, Kazazis DM, Clark RA (1984) In vivo co-distribution of fibronectin and actin fibers in granulation tissue: immunofluorescence and electron microscope studies of the fibronexus at the myofibroblast surface. J Cell Biol 98: 2091 – 2106

    PubMed  CAS  Google Scholar 

  • Small JV, Fürst DO, Thornell LE (1992) The cytoskeletal lattice of muscle cells. Eur J Biochem 208: 559 – 572

    PubMed  CAS  Google Scholar 

  • Stevenson S, Rothery S, Cullen MJ, Severs NJ (1997) Dystrophin is not a specific component of the cardiac costamere. Circ Res 80: 269 – 280

    PubMed  CAS  Google Scholar 

  • Stopak D, Harris AK (1982) Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol 90: 383 – 398

    PubMed  CAS  Google Scholar 

  • Stopak D, Wessells NK, Harris AK (1985) Morphogenetic rearrangement of injected collagen in developing chicken limb buds. Proc Natl Acad Sci USA 82: 2804 – 2808

    PubMed  CAS  Google Scholar 

  • Straub V, Bittner RE, Léger JJ, Voit T (1992) Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J Cell Biol 119: 1183 – 1191

    PubMed  CAS  Google Scholar 

  • Street SF(1983) Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 114:346–364

    Google Scholar 

  • Swasdison S, Mayne R (1989) Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res 257: 537 – 543

    PubMed  CAS  Google Scholar 

  • Terracio L, Simpson DG, Hilenski L, Carver W, Decker RS, Vinson N, Borg TK (1990) Distribution of vinculin in the Z-disk of striated muscle: analysis by laser scanning confocal microscopy. J Cell Physiol 145: 78 – 87

    PubMed  CAS  Google Scholar 

  • Terracio L, Rubin K, Gullberg D, Balog E, Carver W, Jyring R, Borg TK (1991) Expression of collagen lagen binding integrins during cardiac development and hypertrophy. Circ Res 68: 734 – 744

    PubMed  CAS  Google Scholar 

  • Tidball JG, Daniel TL (1986) Myotendinous junctions of tonic muscle cells: structure and loading. Cell Tissue Res 245: 315 – 322

    PubMed  CAS  Google Scholar 

  • Tinsley JM, Blake DJ, Zuellig RA, Davies KE (1994) Increasing complexity of the dystrophin-associated protein complex. Proc Natl Acad Sci USA 91: 8307 – 8313

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Akiyama SK (1992) Fibroblast-mediated collagen gel contraction does not require fibronectin-alpha 5 beta 1 integrin interaction. Anat Rec 234: 153 – 160

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Haaksma (1991) Fibronectin filaments and actin microfilaments are organized into a fibronexus in Dupuytren’s diseased tissue. Anat Rec 230: 175 – 182

    PubMed  CAS  Google Scholar 

  • Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB (1992) Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat Rec 232: 359 – 368

    PubMed  CAS  Google Scholar 

  • Trächslin J, Koch M, Chiquet M (1999) Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res 247: 320 – 328

    PubMed  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124 – 1127

    PubMed  CAS  Google Scholar 

  • Weekes J, Barry ST, Critchley DR (1996) Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem 1 314: 827 – 832

    Google Scholar 

  • Yoshida T, Pan Y, Hanada H, Iwata Y, Shigekawa M (1998) Bidirectional signaling between sarcoglycans and the integrin adhesion system in cultured L6 myocytes. Journal Of Biol Chem 273: 1583 – 1590

    CAS  Google Scholar 

  • Zhang Q, Checovich WJ, Peters DM, Albrecht RM, Mosher DF (1994) Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol 127: 1447 – 1459

    PubMed  CAS  Google Scholar 

  • Zhang Q, Magnusson MK, Mosher DF (1997) Lysophosphatidic acid and microtubuledestabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol Biol Cell 8: 1415 – 1425

    PubMed  CAS  Google Scholar 

  • Zhong C Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K (1998) Rhomediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Bio1141: 539 – 551

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imanaka-Yoshida, K. (2000). The Transmission of Contractility Through Cell Adhesion. In: Macieira-Coelho, A. (eds) Signaling Through the Cell Matrix. Progress in Molecular and Subcellular Biology, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59766-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59766-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67220-3

  • Online ISBN: 978-3-642-59766-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics