Skip to main content

Nonlinear Control of Stop-and-Go Traffic

  • Conference paper
Traffic and Granular Flow ’99

Abstract

In highway traffic one observes metastabiltiy in a certain range of the traffic density. Perturbations of a large enough amplitude develop into jams or stop-andgo waves. Observations and simulations indicate that the latter behave like solitary waves. Current traffic control systems based on varying speed limits cannot always prevent the creation of stop-and-go waves nor can they damp them. We have designed a nonlinear controller which is able to extinguish stop-and-go waves; its performance is demonstrated within simulations using a realistic traffic model. The construction is based on a transformation to a coordinate system moving with the propagation speed of the stop-and-go waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.S. Russell, Report of the fourteenth meeting of the British Association for the Advancement of Science, York, Sept. 1844, London 1845, 311-390, Plates XLVII-

    Google Scholar 

  2. H. Lenz, Entwicklung nichtlinearer, diskreter Regler zum Abbau von Verkehrsfiussinhomogenitaten mit Hilfe makroskopischer Verkehrsmodelle, PhD Thesis, (Shaker, Aachen, 1999).

    Google Scholar 

  3. H. Lenz, R. Sollacher, and M. Lang, Nonlinear Speed-Control for a Continuum Theory of Traffic Flow, pp. 67–72 (IFAC’99, 14th World Congress, Beijing, China, Vol. Q, 1999).

    Google Scholar 

  4. B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E 50, 54–83 (1994).

    Article  Google Scholar 

  5. D. Helbing, Fundamentals of Traffic Flow, Phys. Rev. E 55, 3731–3738 (1997).

    Article  Google Scholar 

  6. C. Wagner, C. Hoffmann, R. Sollacher, J. Wagenhuber, and B. Schürmann, Second-Order Continuum Traffic Flow Model, Phys. Rev. E 54, 5073–5085 (1996).

    Article  Google Scholar 

  7. R. Horowitz, Automated Highway Systems: The Smart Way to Go, pp. 452–463 (8th IFAC Symp. on Transportation Systems, Chania, Greece, 1997).

    Google Scholar 

  8. A. Stotsky, Adaptive/Variable Structure Control of Traffic Flow, pp. 307–312 (IFAC, 13th World Congress, San Francisco, 1996).

    Google Scholar 

  9. M. Cremer and S. Fleischmann, Traffic Responsive Control of Freeway Networks by a State Feedback Approach, pp. 357-376 (Proc. 10th Int. Symp. Transpn. and Traffic Theory, 1987). LVII.

    Google Scholar 

  10. M. Cremer, Traffic Flow on Highways: Models, Observation and Control, (Springer, Berlin, 1979).

    Google Scholar 

  11. M. Papageorgiou, Applications of Automatic Control Concepts to Traffic Flow Modeling and Control, (Lecture Notes in Control and Information Sciences, Vol. 50, Springer, Berlin, 1983).

    Book  MATH  Google Scholar 

  12. S. Smulders, Control by Variable Speed Signs - The Dutch Experiment, pp. 99-103 (6th IEE Conf. on Traffic Monitoring and Control, 1992).

    Google Scholar 

  13. H. Zackor, Judgement of traffic-dependent speed limits on highways, (Forschung, Strafienbau und Verkehrstechnik, Heft 128, 1972).

    Google Scholar 

  14. H. Zackor, R. Kühne, and W. Balz, Investigation of traffic flow when the maximum capacity is reached and when the flow is instable, (Forschung, Strafienbau und Strafienverkehrstechnik, Heft 524, 1988).

    Google Scholar 

  15. B.S. Kerner and H. Rehborn,Experimental features and characteristics of traffic jams, Phys. Rev. E 53, R1297–R1300 (1996).

    Article  Google Scholar 

  16. B.S Kerner and H. Rehborn, Experimental Properties of Complexity in Traffic Flow, Phys. Rev. E 53, R4275–R4278 (1996).

    Article  Google Scholar 

  17. B.S. Kerner, Experimental Characteristics of Traffic Flow for Evaluation of Traffic Modelling, pp. 793–798 (IFAC, Transportation Systems, Chania, Greece, 1997).

    Google Scholar 

  18. J.-J.E. Slotine and W. Li, Applied Nonlinear Control, (Prentice Hall, Englewood Cliffs, New Jersey, 1991).

    MATH  Google Scholar 

  19. H. Lenz and D. Obradovic, Global Control of Lorenz Chaos, pp. 1486–1487 (Proc. 36th IEEE CDC, San Diego, Vol. 2, 1997).

    Google Scholar 

  20. H. Lenz and D. Obradovic, Robust Control of the Chaotic Lorenz System, Int J of Bifurcation and Chaos 7, 1847–2854 (1997).

    Article  Google Scholar 

  21. H. Lenz, R. Berstecher, and M. Lang, Adaptive Sliding-Mode Control of the Absolute Gain, pp. 667–672 (Proc. of the IFAC Nonlinear Control Systems Design Symp., Enschede, The Netherlands, Vol. 3, 1998).

    Google Scholar 

  22. J.H. Hung, W. Gao, and J.C. Hung, IEEE Transactions on Industrial Electronics 40, 2–22 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sollacher, R., Lenz, H. (2000). Nonlinear Control of Stop-and-Go Traffic. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics