Skip to main content

Application of a Deterministic Scheme for the Boltzmann Equation in Modelling Shock Wave Focusing

  • Conference paper
Traffic and Granular Flow ’99

Abstract

A recently developed accelerated deterministic method of approximation of the Boltzmann collision operator is applied in numerical modelling of the process of shock wave focusing in a rarefied noble gas. The results are compared with the results obtained previously for the same problem with the Boltzmann collision operator evaluated by the Monte Carlo quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.V. Aristov and F.G. Tcheremissine, Direct numerical solutions of the kinetic Boltzmann equation, (Comp. Center of Russ. Acad, of Sci., Moscow, 1992).

    Google Scholar 

  2. C. Buet, A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics, Trans. Theory Stat. Phys. 25, 33–60 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Cercignani, The Boltzmann Equation and its Applications, (Springer, 1988).

    Google Scholar 

  4. H. Grönig, Shock Wave Focusing Phenomena, In: 15th Shock Waves and Shock Tubes, Bershader and Hanson (Eds.), pp. 43–56 (Stanford University Press, Stanford, 1986).

    Google Scholar 

  5. P. Kowalczyk, T. Platkowski, and W. Walus, Focusing of a Shock Wave in a Rarefied Gas: A Numerical Study, Shock Waves, submitted, (1999).

    Google Scholar 

  6. T. Platkowski and W. Walus, An Acceleration Procedure for Discrete Velocity Approximation of the Boltzmann Collision Operator, accepted, Computers and Mathematics with Applications, (1999).

    Google Scholar 

  7. Z. Walenta, Focusing a shock wave: Microscopic structure of the phenomenon, Arch. Mech. 50, (1998).

    Google Scholar 

  8. F.G. Tcheremissine, Conservative evaluation of Boltzmann collision integral in discrete ordinates approximation, Comput. Math. Appl. 35, 215–221 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Palczewski, J. Schneider, and A.V. Bobylev, A consistency result for discrete -velocity model of the Boltzmann equation, SIAMJ. Numer. Anal. 34, 1865–1883 (1997).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kowalczyk, P., Platkowski, T., Waluś, W. (2000). Application of a Deterministic Scheme for the Boltzmann Equation in Modelling Shock Wave Focusing. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics