Skip to main content

Fractional Evolution Equations and Irreversibility

  • Conference paper
Traffic and Granular Flow ’99

Abstract

The paper reviews a general theory predicting the general importance of fractional evolution equations. Fractional time evolutions are shown to arise from a microscopic time evolution in a certain long time scaling limit. Fractional time evolutions are generally irreversible. The infinitesimal generators of fractional time evolutions are fractional time derivatives. Evolution equations containing fractional time derivatives are proposed for physical, economical and traffic applications. Regular non-fractional time evolutions emerge as special cases from the results. Also for these regular time evolutions it is found that macroscopic irreversibility arises in the scaling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. In classical mechanics the states are points in phase space, the observables are functions on phase space, and the operator B is specified by a vector field and Poisson brackets. In quantum mechanics (with finitely many degrees of freedom) the states correspond to rays in a Hilbert space, the observables to operators on this space, and the operator B to the Hamiltonian. In field theories the states are normalized positive functionals on an operator algebra of observables, and then B becomes a derivation on the algebra of observables. The equations (1) need not be first order in time. An example is the initial-value problem for the wave equation for g(t,x) 2???9 dt2 C dx2 in one dimension. It can be recast into the form of (1) by introducing a second variable h and defining ’ - ( 0 - » - (??? jk

    Google Scholar 

  2. R. Hilfer, Stochastische Modelle für die betriebliche Planung, (GBI - Verlag, München, 1985).

    Google Scholar 

  3. R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E, Rapid Commun. 51, 848 (1995).

    Google Scholar 

  4. R. Hilfer, On fractional diffusion and its relation with continuous time random walks, In: Anomalous Diffusion: From Basis to Applications, A. Pekalski, R. Kutner, and K. Sznajd-Weron, (Eds.), p. 77 (Springer, 1999).

    Google Scholar 

  5. R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific Publ. Co., Singapore, 2000).

    Google Scholar 

  6. R. Hilfer, Exact solutions for a class of fractal time random walks, Fractals 3, 211 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Hilfer, Fractional time evolution, In: Applications of Fractional Calculus In Physics, R. Hilfer, (Ed.), p. 87 (World Scientific, Singapore, 2000).

    Chapter  Google Scholar 

  8. M. Paczuski and K. Nagel, Self-organized criticality and 1/f noise in traffic, In: Traffic and Granular Flow, D.E. Wolf, M. Schreckenberg, and A. Bachem, (Eds.), p. 73 (World Scientific, Singapore, 1996).

    Google Scholar 

  9. D. Helbing, Traffic modeling by means of physical concepts, In: Traffic and Granular Flow, D.E. Wolf, M. Schreckenberg, and A. Bachem, (Eds.), p. 87 (World Scientific, Singapore, 1996).

    Google Scholar 

  10. J.L. Lebowitz, Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy, Physica A 194, 1 (1993).

    Article  MathSciNet  Google Scholar 

  11. J. Lebowitz, Statistical mechanics: A selective review of two central issues, Rev. Mod. Phys. 71, S346 (1999).

    Article  Google Scholar 

  12. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, (Princeton University Press, Princeton, 1971).

    MATH  Google Scholar 

  13. R. Hilfer, Foundations of fractional dynamics, Fractals 3, 549 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, (Wiley, New York, 1971).

    MATH  Google Scholar 

  15. E. Seneta, Regularly Varying Functions, (Springer Verlag, Berlin, 1976).

    Book  MATH  Google Scholar 

  16. R. Hilfer, Classification theory for an equilibrium phase transitions, Phys. Rev. E 48, 2466 (1993).

    Article  MathSciNet  Google Scholar 

  17. R. Hilfer, On a new class of phase transitions, In: Random Magnetism and High-Temperature Superconductivity, W.P. Beyermann, N.L. Huang-Liu, and D.E. MacLaughlin, (Eds.), p. 85 (World Scientific Publ. Co, Singapore, 1994).

    Google Scholar 

  18. R. Hilfer, Fractional dynamics, irreversibility and ergodicity breaking, Chaos, Solitons & Fractals 5, 1475 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Hilfer, An extension of the dynamical foundation for the statistical equilibrium concept, Physica A 221, 89 (1995).

    Article  MathSciNet  Google Scholar 

  20. S. Bochner, Harmonic Analysis and the Theory of Probability, (University of California Press, Berkeley, 1955).

    MATH  Google Scholar 

  21. K. Yosida, Functional Analysis, (Springer, Berlin, 1965).

    MATH  Google Scholar 

  22. C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, (Springer, Berlin, 1975).

    MATH  Google Scholar 

  23. A.V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them, Pacific J. Math. 10, 419 (1960).

    MathSciNet  MATH  Google Scholar 

  24. U. Westphal, Ein Kalkül für gebrochene Potenzen infinitesimaler Erzeuger von Halbgruppen und Gruppen von Operatoren, Compos. Math. 22, 67 (1970).

    MathSciNet  MATH  Google Scholar 

  25. U. Westphal, Fractional powers of infinitesimal generators of semigroups, In: Applications of Fractional Calculus In Physics, R. Hilfer, (Ed.), (World Scientific, Singapore, 2000)

    Google Scholar 

  26. C. Fox, The G and H functions as symmetrical Fourier kernels, Trans. Am. Math. Soc. 98, 395 (1961).

    MATH  Google Scholar 

  27. B.L.J. Braaksma, Asymptotic expansions and anlytic continuations for a class of Barnes-integrals, Compos. Math. 15, 239 (1964).

    MathSciNet  Google Scholar 

  28. A.M. Mathai and R.K. Saxena, The H-function with Applications in Statistics and Other Disciplines, (Wiley, New Delhi, 1978).

    MATH  Google Scholar 

  29. H.M. Srivastava, K.C. Gupta, and S.P. Goyal, The H-functions of One and Two Variables with Applications, (South Asian Publishers, New Delhi, 1982).

    MATH  Google Scholar 

  30. A.P. Prudnikov, Yu.A. Brychkov, and O.I. Marichev, Integrals and Series, Vol. 3, (Gordon and Breach, New York, 1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hilfer, R. (2000). Fractional Evolution Equations and Irreversibility. In: Helbing, D., Herrmann, H.J., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59751-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59751-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64109-1

  • Online ISBN: 978-3-642-59751-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics