Advertisement

Towards an Integrated Global Geodetic Observing System

  • Markus Rothacher
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 120)

Abstract

Today several independent techniques (VLBI, SLR, LLR, GPS, GLONASS, DORIS, and PRARE) form the basis of space geodesy, each system depending on its own global network of tracking stations. Before thinking of a thorough combination and integration of all these systems, we compare the results of the individual techniques (site coordinates and velocities, geocenter motion, Earth rotation parameters (ERPs), information about the atmosphere, and gravity) to better understand the strengths and weaknesses of each of the techniques.

In a more general discussion of the steps to be done towards an integrated global geodetic observing system we then identify three different levels that have to be considered in such an integration effort: the integration on the network level, the consistency on the level of the observation models and processing standards, and the level of the combination of common geodetic parameter. The success of the challenging new missions to come like CHAMP, GOCE, GRACE, JASON, COSMIC, etc. will critically depend on the quality and consistency of such an integrated global observing system.

Keywords

Very Long Baseline Interferometry Terrestrial Reference Frame Lunar Laser Range Space Geodetic Technique Earth Rotation Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BIH (1985), Annual Report for 1984, published for the International Council of Scientific Unions, Observatoire de Paris & Bureau International des Poids et Mesures, Paris, July 1985.Google Scholar
  2. Boucher, C., and Z. Altamimi (1990), Evolution of the realizations of the Terrestrial Reference System done by the BIH and IERS (1984-1988), IERS Technical Note 4, Observatoire de Paris, Paris, December 1990.Google Scholar
  3. Boucher, C, Z. Altamimi, and L. Duhem (1992), ITRF 91 and its associated velocity field, IERS Technical Note 12, Observatoire de Paris, Paris, October 1992.Google Scholar
  4. Boucher, C, Z. Altamimi, M. Feissel, and P. Sillard (1996), Results and Analysis of the ITRF94, Central Bureau of IERS, Observatoire de Paris, Paris.Google Scholar
  5. Boucher, C, Z. Altamimi, and P. Sillard (1998), Results and Analysis of the ITRF96, IERS Technical Note 24, Observatoire de Paris, Paris, May 1998.Google Scholar
  6. Bruyninx, C. et al. (1997), The Use of the EUREF Permanent GPS Network for the Maintenance of the European Terrestrial Reference Frame, in Proceedings of the Scientific Assembly of the International Association of Geodesy, Rio de Janeiro, Brazil, September 3–9, (in preparation).Google Scholar
  7. Chao, B. F., D. R. Ray, J. M. Gipson, G. D. Egbert, and C. Ma (1996), Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum, Journal of Geophysical Research, 101 (B9), 20151–20163.CrossRefGoogle Scholar
  8. COSMIC (1999), Description of the COSMIC project at http://www.cosmic.ucar.edu/cosmic/about.htm. Google Scholar
  9. Davies, P.B.H., and G. Blewitt (1997), Newcastle-Upon-Tyne Global Network Associate Analysis Centre Annual Report, in IGS 1996 Annual Report, edited by J.F. Zumberge et al., pp. 237–252, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, California U.S.A., November 1997.Google Scholar
  10. Feltens, J., and S. Schaer (1998), IGS Products for the Ionosphere, in Proceedings of the IGS Analysis Center Workshop in Darmstadt, Germany, February 9–11, 1998.Google Scholar
  11. Freedman, A. P., R. Ibanez-Meier, T. A. Herring, S. M. Lichten, and J. O. Dickey (1994), Subdaily Earth rotation during the Epoch’92 campaign, Geophysical Research Letters, 21(9), 769–772.CrossRefGoogle Scholar
  12. Fu, L.L., E.J. Christensen, Ch.A. Yamarone, M. Lefebvre, Y. Ménard, M. Dorrer, and Ph. Escudier (1994), TOPEX/Poseidon Mission Overview, Journal of Geophysical Research, 99 (C12), 24369–24381, December 1994.CrossRefGoogle Scholar
  13. Gipson, J. M. (1996), Very long baseline interferometry determination of neglected tidal terms in high-frequency Earth orientation variation, Journal of Geophysical Research, 101 (B12), 28051–28064.CrossRefGoogle Scholar
  14. Guinot, B., and M. Feissel (1969), Annual Report for 1968, published for the International Council of Scientific Unions, Bureau International de l’Heure, Paris.Google Scholar
  15. Hajj, G.A., E.R. Kursinski, W.I. Bertiger, S.S. Leroy, T.K. Meehan, L.J. Romans, and J.T. Schofield (1996), Initial Results of GPS-LEO Occultation Measurements of Earth’s Atmosphere Obtained with the GPS-MET Experiment, in International Association of Geodesy Symposia, Symposium No. 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, edited by G. Beut1er et al., pp. 144–153, Springer, ISBN 3–540–60872–6.Google Scholar
  16. Herring, T. A. (1997), Analysis of most recent VLBI nutation offset series available at ftp://gemini.gsfc.nasa.gov/pub/solutions/1083_aug97/eop_nutation.1083c (private communication).Google Scholar
  17. Herring, T. A., B. A. Buffett, P. M. Mathews, and I. I. Shapiro (1991), Forced Nutations of the Earth: Influence of Inner Core Dynamics, 3. Very Long Interferometry Data Analysis, Journal of Geophysical Research, 96(B5), 8259–8273.CrossRefGoogle Scholar
  18. Herring, T.A. (1997), MIT T2 Associate Analysis Center Report, in IGS 1996 Annual Report, edited by J.F. Zumberge et al., pp. 255–267, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, California U.S.A., November 1997.Google Scholar
  19. Lemoine, F.G., S.C. Kenyon, J.K. Factor, R.G. Trimmer, N.K. Pavlis, D.S. Chinn, CM. Cox, S.M. Klosko, S.B. Luthcke, M.H. Torrence, Y.M. Wang, R.G. Williamson, E.C. Pavlis, R.H. Rapp, and T.R. Olson (1998), The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA/TP-1998–206861, NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771, July 1998.Google Scholar
  20. Lichten, S. M., S. L. Marcus, and L. O. Dickey (1992), Subdaily resolution of Earth rotation variations with Global Positioning System measurements, Geophysical Research Letters, 19(6), 537–540.CrossRefGoogle Scholar
  21. Ma, C. (1998), Recent VLBI analysis available at ftp://gemini.gsfc.nasa.gov/pub/solutions/1102_aug98/ (private communication).Google Scholar
  22. McCarthy, D.D. (1996), IERS Conventions (1996), IERS Technical Note 21, Observatoire de Paris, Paris, July 1996.Google Scholar
  23. Overney, F., L. Prost, G. Dudle, T. Schildknecht, G. Beutler, J. A. Davis, J. M. Furlong, and P. Hetzel (1998), GPS Time Transfer Using Geodetic Receivers (GeTT): Results on European Baselines, in Proceedings of the 12 th European Frequency and Time Forum EFTF 98, Warsaw, Poland, March 10–12 1998.Google Scholar
  24. Ray, R. D., D. J. Steinberg, B. F. Chao, and D. E. Cartwright (1994), Diurnal and semidiurnal variations in the earth’s rotation rate induced by oceanic tides, Science, 264, 830–832.CrossRefGoogle Scholar
  25. Reigber, Ch., H. Luehr, and P. Schwintzer (1998), Status of the CHAMP Geopotential Mission, in Proceedings of the IAG Section II Symposium, Munich (in preparation).Google Scholar
  26. Rothacher, M. (1998), Recent Contributions of GPS to Earth Rotation and Reference Frames, Habilitation (2nd Ph.D.), University Press, University of Berne.Google Scholar
  27. Rothacher, M., G. Beutler, T.A. Herring, and R. Weber (1999), Estimation of Nutation Using the Global Positioning System, JGR, 104(B3), 4835–4859, March 10 1999.CrossRefGoogle Scholar
  28. Schaer, S., G. Beutler, and M. Rothacher (1998), Mapping and Predicting the Ionosphere, in Proceedings of the IGS Analysis Center Workshop in Darmstadt, Germany, February 9–11, 1998.Google Scholar
  29. Springer, T. A., W. Gurtner, M. Rothacher, and S. Schaer (1997), EUREF Activities at the CODE Analysis Center, in Proceedings of the 4th International Seminar on GPS in Central Europe, vol. 4(27), pp. 165–176, Warsaw University of Technology, Warsaw, Poland, May 7–9 1997.Google Scholar
  30. Weber, R. (1996), Monitoring Earth Orientation Variations at the Center for Orbit Determination in Europe (CODE), Österreichische Zeitschrift für Vermessung & Geoinformation, 84(3), 269–275.Google Scholar
  31. Yunck, T.P., and W.G. Melbourne (1996), Spaceborne GPS for Earth Science, in International Association of Geodesy Symposia, Symposium No. 115: GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications, edited by G. Beutler et al., pp. 113–122, Springer, ISBN 3–540–60872–6.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Markus Rothacher
    • 1
  1. 1.Astronomical InstituteUniversity of BerneBerneSwitzerland

Personalised recommendations