Skip to main content

Geodetic Applications of the ROCSAT-3/COSMIC Mission

  • Conference paper
  • 254 Accesses

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 120))

Abstract

The jointly planned Taiwan-US space mission ROCSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) is scheduled for launch in 2001. A 6–8 low Earth orbiting satellite constellation will conduct atmospheric limb-sounding using GPS radio occultation. Although not the primary scientific objective, it is envisioned that the initial low altitude orbits (~400 km) of the satellites (some in tandem) will provide unique opportunities for gravity mapping and precision orbit determination experiments. Simulations show that, depending on the orbit evolution scenario, the use of these data can yield at least an order of magnitude improvement over the state-of-the-art global gravity model EGM96 out to degree and order 20–40 (spatial resolution of 1000–500 km). This improvement would be very useful in anticipation of missions that focus on the temporal variations of the field, such as GRACE, and for current and future altimeter missions. Additionally, useful signals of low-degree temporal variations can be obtained if non-conservative forces remain “modelable” at the final altitude of above 700 km. Some of the geodetic benefits that can be expected from ROCS ATS/COSMIC include:

  1. (a)

    simultaneous improvement of the GPS satellites’ orbits within a few hours from data collection, essential to all GPS applications (a factor of two improvement can be expected over the current accuracy at 5–10 cm),

  2. (b)

    improved estimation of the global surface pressure fields, useful for geodynamic and altimetric studies such as Earth rotation, geocenter motion, time-varying gravity, and ocean circulation, and

  3. (c)

    inclusion of satellite laser ranging reflectors, proposed as a secondary tracking system, will help establish local datum ties to the conventional terrestrial reference frame.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CHAO B. F. (1994). The Geoid and Earth Rotation, in Geophysical Interpretations of Geoid, ed. P. VANICEK AND N. CHRISTOU, CRC Press, Boca Raton.

    Google Scholar 

  • LEMOINE F. G., PAVLIS N. K., KENYON S. C., RAPP R. H., PAVLIS E. C., CHAO B. F.(1998). New high-resolution model developed for Earth’s gravitational field, EOS, Trans. Amer. Geophys. Union 79, 113–118.

    Article  Google Scholar 

  • NAS (National Science Council) (1997). Satellite Gravity and the Geosphere: Contributions to the study of the solid Earth and its fluid envelope, J. O. DICKEY (ed.), Washington, D.C.

    Google Scholar 

  • PAVLIS D. E., et al. (1996). GEODYN Operations Manual, 5 Volumes, Raytheon ITSS Corp., Greenbelt, Maryland.

    Google Scholar 

  • PAVLIS E. C. (1995). Comparison of GPS s/c Orbits Determined from GPS and SLR Tracking Data, Adv. Space Res., 16, (12)55–(12)58.

    Article  Google Scholar 

  • PAVLIS E. C., OLSON R.T. (1995). Geopotential Improvement From Explorer Platform Single-Frequency GPS Tracking, Eos Trans. AGU, 76, Fall Meeting Suppl., 147.

    Google Scholar 

  • PAVLIS E. C., CLARK T. A., BILLS B. (1996). Gravity modeling with the Hummingbird Constellation, Eos Trans. AGU, 77, Spring Meeting Suppl., S40.

    Google Scholar 

  • TAPLEY B. (1997). The Gravity Recovery and Climate Experiment (GRACE), Eos Trans. AGU, 78, Fall Meeting Suppl., 163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Pavlis, E.C. et al. (2000). Geodetic Applications of the ROCSAT-3/COSMIC Mission. In: Rummel, R., Drewes, H., Bosch, W., Hornik, H. (eds) Towards an Integrated Global Geodetic Observing System (IGGOS). International Association of Geodesy Symposia, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59745-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59745-9_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64107-7

  • Online ISBN: 978-3-642-59745-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics