Advertisement

Simulation of the GOCE Gravity Field Mission

  • H. Oberndorfer
  • J. Müller
  • R. Dorobantu
  • C. Gerlach
  • R. Rummel
  • N. Sneeuw
  • R. Koop
  • P. Visser
  • P. Hoyng
  • A. Selig
  • M. Smit
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 120)

Abstract

GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) is one of the four selected ESA Earth Explorer Missions. The main objective of GOCE is the determination of the Earth’s gravity field with high spatial resolution and with high homogeneous accuracy. For this purpose, two observation concepts will be realised. Satellite-to-Satellite Tracking (SST) in high-low mode will be used for the orbit determination and for the retrieval of the long-wavelength part of the gravity field. Satellite Gravity Gradiometry (SGG) will be employed for the derivation of the medium/short-wavelength parts of the gravity field..

For the realisation, a GPS receiver, a 3-axis gradiometer and auxiliary instruments are needed; e.g. star trackers to control the orientation of the spacecraft or thrusters for attitude and drag-free control. Each instrument exhibits, its own error behaviour which affects the measurements and the final products in some typical way.

The SID consortium consists of three organisations: the Institut fur Astronomische und Physikalische Geodäsie (IAPG), Delft Institute for Earth-Oriented Space Research (DEOS) and the Space Research Organization Netherlands (SRON). They have the goal to provide a reliable error budget for the GOCE system, identify it’s weaknesses and limitations and make a complete error analysis of the whole mission.

A complete simulator of the gradiometer has been developed. The simulator describes the test mass motion as a mass-spring system. The output are gravity gradients (V ij out ) as if they were measured, based on input gravity accelerations, S/C position, orientation and disturbing forces. The corresponding error PSD’s (Power Spectral Densities) representing the effect of different error sources are computed. The PSD’s are propagated to spherical harmonic error spectra, geoid heights and gravity anomaly accuracies to assess effects of instrument and measurement errors on gravity field determination. The different tasks within the consortium are described by means of a flow chart.

Keywords

Power Spectral Density Gravity Field Orbit Determination Gravity Gradient Geoid Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ESA (1996): Gravity Field and Steady-State Ocean Circulation Mission, Reports for Assessment: The Nine Candidate Earth Explorer Missions, ESA SP-1196(1), ESA Publications Division, ESTEC, NoordwijkGoogle Scholar
  2. Hoyng P.(1997): High tides for GOCE, SRON Document I-G-001SR/97Google Scholar
  3. Reigber C, Luehr H., Schwintzer P. (1998): Status of CHAMP Geopotential Mission, this issueGoogle Scholar
  4. Rummel R.: (1986) Satellite Gradiometry, in: H. Sünkel (ed.), Mathematical and Numerical Techniques Physical Geodesy, Lecture Notes in Earth Sciences, Vol. 7, Springer Verlag, BerlinGoogle Scholar
  5. Sneeuw N., Koop R., Schrama E.: (1996): Global Gravity Field Analysis for the STEP Geodesy Co-Experiment Using GPS and Gradient Observations Proceedings of the STEP Symposium, 6–8 April 1993, Pisa, Italy, ESA WPP-115Google Scholar
  6. Tapley B.D. (1998): The Gravity recovery and Climate Experiment (GRACE), this issueGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • H. Oberndorfer
    • 1
  • J. Müller
    • 1
  • R. Dorobantu
    • 1
  • C. Gerlach
    • 1
  • R. Rummel
    • 1
  • N. Sneeuw
    • 1
  • R. Koop
    • 2
  • P. Visser
    • 2
  • P. Hoyng
    • 3
  • A. Selig
    • 3
  • M. Smit
    • 3
  1. 1.Institut für Astronomische und Physikalische Geodäsie (IAPG)Technische Universität MünchenMünchenGermany
  2. 2.Delft Institute for Earth-Oriented Space Research (DEOS)Delft University of TechnologyNL
  3. 3.Space Research Organization Netherlands (SRON)UtrechtNL

Personalised recommendations