Combination of Space Techniques into one Integrated Processing Model

  • Remko Scharroo
  • E. J. O. Schrama
  • R. H. N. Haagmans
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 120)


In the determination of the reference system satellite orbit determination plays an important role. With purely geometric techniques it is not possible to determine e.g. the position of the Earth’s centre of mass. However, the introduction of dynamic techniques, such as satellite tracking, is accompanied by a range of parameter definitions and assumptions. These make the determination of the reference system and related parameters dependent on the assumed parameter values, but also on the type of tracking data that is used.

In conclusion it becomes obvious that the accurate establishment of reference frames and datums, precise orbit determination of several satellites, satellite tracking and gravity field determination are heavily interlinked subjects that require an integrated processing.


Global Position System Gravity Field Orbit Determination Satellite Laser Range Polar Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and related publication

  1. Boucher, C., and Z. Altamini, International Terrestrial Reference Frame, GPS World, 7(9), 71–74, 1996.Google Scholar
  2. Cazenave, A., J. J. Valette, and C. Boucher, Positioning results with DORIS data on SPOT-2 after first year of mission, J. Geophys. Res., 97, 7109–7119, 1992.CrossRefGoogle Scholar
  3. Cazenave, A., P. Gegout, L. Soudarin, K. Dominh, F. Barlier, P. Exertier, and Y. Boudon, Geodetic results from Lageos and DORIS satellite data, contribution of space geodetic to geo-dynamics; crustal dynamics, geodynamics, AGU Series, 23, 81–98, 1993.Google Scholar
  4. Cohen, S. C, and D. E. Smith, Lageos scientific results: Introduction, J. Geophys. Res., 90(B 11), 9217–9220, 1985.CrossRefGoogle Scholar
  5. Crétaux, J. F., L. Soudarin, A. Cazenave, and F. Bouillé, Present-day plate motions derived from the DORIS space system, J. Geophys. Res., 103, 30,167–30, 181, 1998.Google Scholar
  6. Francis, C. R., A. Caporali, L. Cavaleri, A. Cenci, P. Ciotto, L. Ciraolo, W. Gurtner, F. H. Massmann, D. del Rosso, R. Scharroo, P. Spalla, and E. Vermaat, The Calibration of the ERS-1 Radar Altimeter — The Venice Calibration Campaign, ESA Report ER-RP-ESA-RA-0257 issue 2.0, ESA/ESTEC, Noordwijk, The Netherlands, 1993.Google Scholar
  7. Haagmans, R. H. N., A. J. T. de Bruijne, and E. de Min, A procedure for combining gravimetric geoid models and independent geoid data, with an example in the North Sea region, DEOS Progress Letters, 98.1, 89–99, 1998.Google Scholar
  8. IERS, Earth orientation, reference frames and atmospheric excitation functions, IERS Technical Note 19, 1994 IERS annual report, 1995.Google Scholar
  9. Scharroo, R., and P. N. A. M. Visser, ERS Tandem Mission orbits: is 5 cm still a challenge?, in Proceedings of the Third ERS Symposium, Eur. Space Agency Spec. Publ., ESA SP-414, vol. 3, edited by T.-D. Guyenne and D. Danesy, pp. 1643–1648, 1997.Google Scholar
  10. Scharroo, R., and P. N. A. M. Visser, Precise orbit determination and gravity field improvement for the ERS satellites, J. Geophys. Res., 103 (C4), 8113–8127, 1998.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Remko Scharroo
    • 1
  • E. J. O. Schrama
    • 2
  • R. H. N. Haagmans
    • 2
  1. 1.Delft Institute for Earth-Oriented Space Research (DEOS)Delft University of TechnologyDelftThe Netherlands
  2. 2.DEOSDelftThe Netherlands

Personalised recommendations