Geodetic Datum Definition of the SAGA Network

  • Detlef Angermann
  • Jürgen Klotz
  • Christoph Reigber
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 120)


In cooperation with various organizations in the host countries, the GFZ Potsdam established the large-scale GPS network SAGA (South American Geodynamic Activities) covering Chile and parts of Argentina. The network consists of 215 sites including two sites on the islands Robinson Crusoe and San Felix that are part of the Nazca plate.

The GPS data were processed with the GFZ Software EPOS resulting in a station coordinates repeatability of 1 – 3 mm horizontally and 5 mm vertically. We processed the SAGA data simultaneously with data of the IGS station network to transform the SAGA network into the ITRF96 frame. Doing this, we computed global solutions with about 20 globally distributed IGS stations and regional solutions with IGS stations in South America. The mean station coordinate residuals for the globally distributed IGS stations between the SAGA solution and the ITRF96 coordinates are 1cm horizontally and 1 – 2 cm vertically. With respect to the South American reference frame the mean station coordinates residuals are in the range of 2 – 5 mm horizontally and below 1 cm for the height. The residual motions for five IGS stations located on the stable part of South America are 1 – 3 mm/yr.


Global Position System Satellite Laser Range Global Position System Data Global Position System Station Global Position System Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angermann D., Baustert G., Klotz J., Reinking J., Zhu S.Y.: The Impact of IGS on the Analysis of Regional GPS-Networks. IAG Series No. 115: GPS Trends in Precise Terrestrial, Airborne, Space Applications, 35–39, Springer Verlag, 1996.Google Scholar
  2. Angermann D., Baustert G., Galas R., Zhu S.Y.: EPOS.P.V3 (Earth Parameter and Orbit System), Software User Manual for GPS Data Processing. Scientific Technical Report STR97/14, 52pp., GeoForschungsZentrum Potsdam, 1997.Google Scholar
  3. Argus D.F., Gordon R. G.: No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1, Geophys. Res. Lett., 18, 2038–2042, 1991.CrossRefGoogle Scholar
  4. Boucher C., Altamimi Z., Feissel M., Sillard P.: Results and Analysis of the ITRF94, IERS Tech. Note, 20, 198 pp., 1996.Google Scholar
  5. Boucher C., Altamimi Z., Sillard P.: Results and Analysis of the ITRF96, IERS Tech. Note, 24, 166 pp., 1998.Google Scholar
  6. Davis J. L., Herring T. A., Shapiro I.I., Rogers A. E.: Geodesy by radio interferometry: Effects of atmospheric modeling on estimates of baseline length, Radio Sci. 20, 1593–1607, 1985.CrossRefGoogle Scholar
  7. DeMets C., Gordon R. G., Argus D. F., Stein S.: Current plate motions, Geophysical J. Int., 101, 425–478, 1990.CrossRefGoogle Scholar
  8. DeMets C., Gordon R. G., Argus D. F., Stein S.: Effect of recent revisions on to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Lett., 21, 2191–2194, 1994.CrossRefGoogle Scholar
  9. Drewes H.: Combination of VLBI, SLR and GPS determined station velocities for actual plate kinematic and crustal deformation models. IAG Symp. 119, eds. R. Forsberg, M. Feissel, R. Dietrich, 377–382, 1997.Google Scholar
  10. International GPS Service for Geodynamics, 1996 Annual Report, eds. J. F. Zumberge, D. E. Fulton, R. E. Neilan, IGS Central Bureau, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 1997.Google Scholar
  11. Klotz J., Reinking J., Angermann D.: Die Vermessung der Deformation der Erdoberfläche, Geowissenschaften, 14, 389–394, 1996.Google Scholar
  12. Klotz J., Angermann D., Michel G.W., Porth R., Reigber Ch., Reinking J., Viramonte J., Perdomo R., Rios V.H., Barientos S., Barriga R., Cifuentes O.: GPS-derived Deformation of the Central Andes Including the 1995 Antofagasta Mw= 8.0 Earthquake, Pure and Appl. Geophys., in press, 1999.Google Scholar
  13. Reigber Ch., Xia Y., Michel G., Klotz J., Angermann D.: The Antofagasta 1995 Earthquake: Crustal Deformation Pattern as observed by GPS and D-INSAR. Proceedings of 3. ERS Symposium, 507–513, Florence, 1997.Google Scholar
  14. Rothacher, M., Mader G.: Combination of Antenna Phase Center Offsets and Variations: Antenna Calibration set IGS 01, IGS Central Bureau/University of Berne, Berne, Switzerland, 1996.Google Scholar
  15. Rothacher M., Beutler G., Springer T.A., Schaer S.: IGS-Analysis Center Solution SSC(CODE)98P01, University of Berne, Berne, Switzerland, 1998.Google Scholar
  16. Seemüller W., Drewes H.: Annual Report 1997 of the RNAAC SIRGAS. IGS 1997 Technical Reports, 173–174, Pasadena, USA, 1998.Google Scholar
  17. Sillard P., Altamimi Z., Boucher C.: The TTRF96 realization and its associated velocity field, Geophys. Res. Lett., 25, 3223–3226, 1998.CrossRefGoogle Scholar
  18. SIRGAS: SIRGAS Final Report, Working Groups I and II. Ed. by Inst. Brasileiro de Geografia e Estatistica (IBGE), Rio de Janeiro, 1997.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 2000

Authors and Affiliations

  • Detlef Angermann
    • 1
    • 2
  • Jürgen Klotz
    • 1
  • Christoph Reigber
    • 1
  1. 1.Div. 1, Sect. 1.1GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Deutsches Geodätisches ForschungsinstitutMünchenGermany

Personalised recommendations