Skip to main content

Introduction to Discontinuous Wavelets

  • Conference paper

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 11))

Abstract

Wavelets provide a tool for efficient representation of functions. This efficient representation has proven useful in the numerical solution of non-linear evolution equations. In this paper we provide a brief review of the use of wavelets for efficient representation of functions, and in particular we describe the piecewise-discontinuous basis of wavelets proposed by Alpert. We review the useful properties this basis has for the solution of PDE’s, and introduce an illustrative approach to the representation of boundary conditions. We also discuss the extension to higher dimensional problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Alpert. A Class of Bases in l 2 for the Sparse Representation of Integral Operators. SIAM J. Math. Anal, 24 (1): 246–262, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi. Adaptive solution of partial differential equations in multiwavelet bases. Preprint, 1999.

    Google Scholar 

  3. G. Beylkin, R. R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms I. Comm. Pure and Appl. Math., 44:141–183, 1991. Yale University Technical Report YALEU/DCS/RR-696, August 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Beylkin and J. M. Keiser. On the adaptive numerical solution of nonlinear partial differential equations in wavelet bases. J. Comput. Phys., 132 (2): 233–259, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Series in Applied Mathematics. SIAM, 1992.

    MATH  Google Scholar 

  6. Spencer J. Sherwin and George Em. Karniadakis. A new triangular and tetrahedral basis for high-order (hp) finite element methods. Internat. J. Numer. Methods Engrg., 38 (22): 3775–3802, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. von Petersdorff, C. Schwab, and R. Schneider. Multiwavelets for second-kind integral equations. SIAM J. Numer. Anal., 34 (6): 2212–2227, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Yu, K. Kolarov, and W. Lynch. Barysymmetric multiwavelets on triangle. Preprint, March 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coult, N. (2000). Introduction to Discontinuous Wavelets. In: Cockburn, B., Karniadakis, G.E., Shu, CW. (eds) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59721-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59721-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64098-8

  • Online ISBN: 978-3-642-59721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics