Skip to main content

The Utility of Modeling and Simulation in Determining Transport Performance Properties of Semiconductors

  • Conference paper
Discontinuous Galerkin Methods

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 11))

  • 5074 Accesses

Abstract

The RKDG method has been effectively used in modeling and simulating semiconductor devices, where the underlying models are hydrodynamic in nature. These include classical as well as quantum models. In this paper, we survey and interpret some of these results. For classical transport, we review the simulation of a benchmark MESFET transistor by means of discontinuous Galerkin methods of degree one. For quantum transport, we report the success in simulation of the resonant tunneling diode. The principal features here are negative differential resistance and hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baccarani, G., Wordeman, M.R.: An investigation of steady-state velocity overshoot effects in Si and GaAs devices. Solid State Electr., 28 (1985) 407–416

    Article  Google Scholar 

  2. Bløtekjr, K.: Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices, 17 (1970) 38–47

    Article  Google Scholar 

  3. Chen, G.-Q., Jerome, J. W., Shu, C.-W., Wang, D.: Two carrier semiconductor device models with geometric structure and symmetry properties. In: J. Jerome (ed.) Modelling and Computation for Applications in Mathematics, Science, and Engineering, Clarendon Press, Oxford 1998, pp. 103–140

    Google Scholar 

  4. Chen, Z., Cockburn, B., Jerome, J. W., Shu, C.-W.: Mixed-RKGIJ finite element methods for the 2-D hydrodynamic model for semiconductor device simulation. VLSI DESIGN 3 (1995) 145–158

    Article  Google Scholar 

  5. Chen, Z., Cockburn, B., Gardner, C., Jerome, J. W.: Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comp. Phys. 117 (1995) 274–280

    Article  MATH  Google Scholar 

  6. Cockburn, B., Hou, S., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comp. 54 (1990) 545–581

    MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998) 2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardner, C.L.: The quantum hydrodynamic model for semiconductor devices. SIAM J. Appl. Math. 54 (1994) 409–427

    MATH  Google Scholar 

  9. Jerome, J. W.: Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices. Springer-Verlag, Heidelberg, 1996

    Google Scholar 

  10. Jerome, J. W., Shu, C.-W.: Energy models for one-carrier transport in semiconductor devices. In: W.M. Coughran. J. Cole, P. Lloyd, and J.K. White (eds.) Semiconductors, Part II. IMA Volumes in Mathematics and Its Applications, vol. 59. Springer, New York 1994, pp. 185–207

    Google Scholar 

  11. Jerome, J. W., Shu, C.-W.: Transport effects & characteristic modes in the modeling & simulation of submicron devices. IEEE Trans. on Computer-Aided Design. 14 (1995) 917–923

    Article  Google Scholar 

  12. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien-New York, 1984

    Google Scholar 

  13. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comp. Phys. 77 (1988) 439–471

    Article  MathSciNet  MATH  Google Scholar 

  14. Shu, C.-W., Osher, S.J.: Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comp. Phys. 83 (1989) 32–78

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, B., Jerome, J. W.: On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal. 26 (1996) 845–856

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cockburn, B., Jerome, J.W., Shu, CW. (2000). The Utility of Modeling and Simulation in Determining Transport Performance Properties of Semiconductors. In: Cockburn, B., Karniadakis, G.E., Shu, CW. (eds) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59721-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59721-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64098-8

  • Online ISBN: 978-3-642-59721-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics