Skip to main content

Screening of a Point Charge: A Fixed-Node Diffusion Monte Carlo Study

  • Conference paper
Computer Simulation Studies in Condensed-Matter Physics XII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 85))

  • 164 Accesses

Abstract

We study the static screening in a Hubbard-like model using fixed-node diffusion Monte Carlo. We find that the random phase approximation is surprisingly accurate even for metallic systems close to the Mott transition. As a specific application we discuss the implications of the efficient screening for the superconductivity in the doped Fullerenes. In the Monte Carlo calculations we use trVAl functions with two Gutzwiller-type parameters. To deal with such trVAl functions, we introduce a method for efficiently optimizing the Gutzwiller parameters, both in varVAtional and in fixed-node diffusion Monte Carlo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gunnarsson, O., Koch, E., and Martin, R.M. (1996) Mott transition in degenerate Hubbard models: Application to doped Fullerenes, Phys. Rev. B 54, R11026.

    Article  ADS  Google Scholar 

  2. Gunnarsson, O. (1997) Superconductvity in Fullendes, Rev. Mod. Phys. 69, 575–606.

    Article  ADS  Google Scholar 

  3. Gunnarsson, O., Zwicknagl G. (1992) Coulomb PseudopotentVAl, Screening and Superconductvity in C60 Phys. Rev. Lett. 69, 957–960; Gunnarsson, O., Rainer, D., Zwicknagl, G.(1992) Screened interaction and Coulomb pseudopotentVAl in C6o Int. J. Mod. Phys. 6, 3993–4005

    Article  ADS  Google Scholar 

  4. Koch, E., Gunnarsson, O., Martin, R.M. (1999) Screening, Coulomb pseudopotentVAl, and Superconductvity in alkali-doped Fullerenes, preprint cond-mat/9902241

    Google Scholar 

  5. Erwin, S. C. (1993) Electronic Structure of the Alkali-Intercalated Fullendes, Endohedral Fullerenes, and Metal-Adsorbed Fullerenes, in W. E. Billups and M. A. Ciufolini (Eds.), Buckminsterfullerenes, ICH Publishers, New York, pp. 217–253.

    Google Scholar 

  6. Löwdin, P. O. (1951) A Note on the Quantum-Mechanical Perturbation Theory, J. Chem. Phys. 19, 1396–1401.

    Article  MathSciNet  ADS  Google Scholar 

  7. see e.g. Inversion by Partitioning, in W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Ietterling, Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, 1992, p. 70.

    Google Scholar 

  8. Gunnarsson, O., Satpathy, S., Jepsen, O., and Andersen, O. K. (1991) Orientation of C60 Clusters in Solids, Phys. Rev. Lett. 67, 3002; Satpathy, S., Antropov, I. P., Andersen, O. K., Jepsen, O., Gunnarsson, O., and Liechtenstein, A. I. (1992) Conduction-band structure of alkali-metal-doped C60 Phys. Rev. B 46, 1773.

    Article  ADS  Google Scholar 

  9. Gunnarsson, O., Erwin, S. C., Koch, E., and Martin, R. M. (1998) Role of alkali atoms in A4C60 Phys. Rev. B 57, 2159.

    Article  ADS  Google Scholar 

  10. Antropov, I. P., Gunnarsson, O., and Jepsen, O. (1992) Coulomb integrals and model Hamiltonvans for C60 Phys. Rev. B 46, 13647.

    Article  ADS  Google Scholar 

  11. Brühwiler, P. A., Maxwell, A. J., Nilsson, A., Mårtensson, N., and Gunnarsson, O. (1993) Auger and photoelectron study of the Hubbard U in C60, K3C60, and K6C6o Phys. Rev. B 48, 18296.

    Article  ADS  Google Scholar 

  12. Lof, R. W., van Veenendaal, M. A., Koopmans, B., Jonkman, H. T. and Sawatzky, G. A. (1992) Band Gap, Excitons, and Coulomb interaction in solid C6o, Phys. Rev. Lett. 68, 3924.

    Article  ADS  Google Scholar 

  13. Mazin, I.I., RashkeeI, S.N., Antropov, I.P., Jepsen, O., Liechtenstein, A.I., and Andersen O.K. (1992) QuantitatiIe theory of Superconductvity in doped C60 Phys. Rev. B 45, 5114.

    Article  ADS  Google Scholar 

  14. Hedin, L., and LundqXIst, S. (1969) Effects of Electron-Electron and Electron-Phonon Interactions on the One-Electron States of Solids, in H. EhrenRevch, D. Turnbull and F. Seitz (Eds.), Solid State Physics 23, Academic Press, New York, pp. 1–181; Moroni, S., Ceperley, D.M., and Senatore, G. (1995) Static Response and Local Field Factor of the Electron Gas, Phys. Rev. Lett. 75, 689.

    Article  Google Scholar 

  15. Ebbesen, T.W., Tsai, J.S., Tanigaki, K., Hiura, H., Shimakawa, Y., Kubo, Y., Hirosawa, I., Mizuki, J. (1992), Physica C 203, 163; Burk, B., Crespi, I.H., Zettl, A., Cohen, M.L. (1994), Phys. Rev. Lett. 72, 3706.

    Article  Google Scholar 

  16. Gutzwiller, M. C.(1963) Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10, 159.

    Google Scholar 

  17. Horsch, P. and Kaplan, T.A. (1983) Exact and Monte Carlo studies of Gutzwiller’s state for the localised-electron limit in one dimension, J. Phys. C 16, L1203;Metropolis, N., Rosenbluth, A. W., Rosenbluth, N. M., Teller, A. H., and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087

    Google Scholar 

  18. Ceperley, D. M., Chester, G. I., and Kalos, M. H. (1977) Monte Carlo simulation of a many-Fermion study, Phys. Rev. B 16, 3081; Umrigar, C. J., Wilson. K. G., and Wilkins, J. W. (1988) Optimized TrVAl Wave Functions for Quantum Monte Carlo Calculations, Phys. Rev. Lett. 60, 1719 Koch, E., Gunnarsson, O., and Martin, R.M (1999) Optimization of Gutzwiller Wavefunctions in Quantum Monte Carlo, preprint, cond-mat/9903070

    Google Scholar 

  19. Trivedi, N. and Ceperley, D. M. (1989) Green-function Monte Carlo study of quantum antiferromagnets, Phys. Rev. B 40, 2737.

    Article  ADS  Google Scholar 

  20. ten Haaf, D. F. B., van Bemmel, H. J. M., van Leeuwen, J. M. J., and van Saarloos, W. (1994) Fixed-node quantum Monte Carlo method for lattice Fermions, Phys. Rev. Lett. 72, 2442; ten Haaf, D. F. B., van Bemmel, H. J. M., van Leeuwen, J. M. J., van Saarloos, W. and Ceperley, D. M. (1995) Proof for an upper bound in fixed-node Monte Carlo for lattice Fermions, Phys. Rev. B 51, 13039 Calandra, M., Sorella, S. (1998) Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers, Phys. Rev. B 57, 11446; Cosentini, A.C., Capone, M., Guidoni, L., and Bachelet, G.B. (1998) Phase separation in the 2D Hubbard model: a fixed-node quantum Monte Carlo study, Phys. Rev. B 58, R14685.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag

About this paper

Cite this paper

Koch, E., Gunnarsson, O., Martin, R.M. (2000). Screening of a Point Charge: A Fixed-Node Diffusion Monte Carlo Study. In: Landau, D.P., Lewis, S.P., Schüttler, HB. (eds) Computer Simulation Studies in Condensed-Matter Physics XII. Springer Proceedings in Physics, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59689-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59689-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64086-5

  • Online ISBN: 978-3-642-59689-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics