Skip to main content

HIV Neuropathogenesis

  • Conference paper
HIV-Infekt

Abstract

Human Immunodeficiency Virus type I (HIV-i) infects the brain and frequently causes dementia and other neurologic disorders in patients with AIDS [reviewed in 31, 39, 48]. Until recently, HIV-1-associated dementia and related cognitive and motor disorders occurred in up to 10–20% of AIDS patients. However, the frequency of these disorders has declined to approximately 5% of AIDS patients due to the use of highly active antiretroviral therapy (HAART). Other HIV-i-related neurologic disorders include peripheral neuropathies, myelopathies, and aseptic meningitis. Neurologic disorders in AIDS patients are also caused by opportunistic infections and primary central nervous system (CNS) lymphoma [39, 48].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright AV, Shieh JTC, Itoh T, Lee B, Pleasure D, O’Connor MJ, Doms RW and Gonzalez-Scarano F (1999) Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol 73: 205–213

    PubMed  CAS  Google Scholar 

  2. Baldeweg T, Catalan J, Gazzard BG, Weiss RA and Boshoff C (1998) Kaposi’s sarcoma and protection from HIV dementia. Science 280: 362

    CAS  Google Scholar 

  3. Barroga CF, Ellis R, Nelson J, Heaton RK, Atkinson JH, McCutchan JA, Grant I and Spector SA (1997) HIV-i neurocognitive disorders and chemokine receptors. AIDS 11: 1651–1664

    PubMed  CAS  Google Scholar 

  4. Bencherif B and Rottenberg DA (1998) Neuroimaging of the AIDS dementia complex. AIDS 12:233– 244

    Google Scholar 

  5. Berger EA (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11:(Suppl A) S3‐S16

    Google Scholar 

  6. Brew BJ, Evans L, Byrne C, Pemberton L, Hurren L (1996) The relationship between AIDS dementia complex and the presence of macrophage tropic and non-syncytium inducing isolates of human immunodeficiency virus type 1 in the cerebrospinal fluid. J Neuro Virol 2: 152–157

    CAS  Google Scholar 

  7. Cairns JS and D’Souza MP (1998) Chemokines and HIV-i second receptors: The therapeutic connection. Nat Med 4: 563–568

    Article  PubMed  CAS  Google Scholar 

  8. Chang L, Ernst T, Leonido-Yee M, Walot I and Singer E (1999) Cerebral metabolite abnormalities correlate with clinical severity of HIV-i cognitive motor complex. Neurology 52: 100–108

    PubMed  CAS  Google Scholar 

  9. Choe H, Farzan M, Konkel M, Martin K, Sun Y, Marcon L, Cayabyab M, Berman M, Dorf ME, Gerard N, Gerard C, Sodroski J (1998) The orphan seven-transmembrane receptor apj supports the entry of primary T-cell-line-tropic and dualtropic human immunodeficiency virus type 1. J Virol 72: 6113–6118

    PubMed  CAS  Google Scholar 

  10. Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P, Vagani A, Sozani S, Mantovani A, Lazzarin A and Poli G (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic Protein‐i correlate with HIV-i encephalitis and local viral replication. AIDS 12: 1327–1332

    Article  PubMed  CAS  Google Scholar 

  11. Conant K, Garzino-Demo A, Nath A, McArthur JC, Halliday W, Power C, Gallo RC, Major EO (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc Natl Acad Sci USA 95: 3117–3121

    Article  PubMed  CAS  Google Scholar 

  12. Dana Consortium on Therapy of HIV Dementia and Related Cognitive Disorders (1998) A randomized, double-blind, placebo-controlled trial of deprenyl and thioctic acid in human immunodeficiency virus-associated cognitive impairment. Neurology 50: 645–651

    Google Scholar 

  13. Doms RW and Peiper SC (1997) Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology 235: 179–190

    Article  PubMed  CAS  Google Scholar 

  14. Edinger AL, Hoffman TL, Sharron M, Lee B, Yi Y, Choe W, Kolson DL, Mitrovic B, Zhou Y, Faulds D, Coliman RG, Hesselgesser J, Horuk R and Doms RW (1998) An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 72: 7934–7940

    PubMed  CAS  Google Scholar 

  15. Edinger AL, Mankowski JC, Doranz BJ, Margulies BJ, Lee B, Rucker J, Sharron M, Hoffman TL, Benson JF, Zink MC, Hirsch VM, Clements JE and Doms RW (1997) CD4-independent, CCR5‐dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc Natl Acad Sci USA 94: 14742–14747

    Article  PubMed  CAS  Google Scholar 

  16. Endres MJ, Clapham PR, Marsh M, Ahuja M, Turner JD, McKnight A, Thomas JF, Stoebenau-Haggarty B, Choe S, Vance PJ, Wells TNC, Power CA, Sutterwala SS, Doms RW, Landau NR and Hoxie JA (1996) CD4-independent infection by HIV-2 is mediated by fusin/CXCR4. Cell 87: 745–756

    Article  PubMed  CAS  Google Scholar 

  17. Ellis RJ, Hsia K, Spector SA et al (1997) Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. Ann Neurol 42: 679–688

    Article  PubMed  CAS  Google Scholar 

  18. Fitzgibbon JE, Gaur S, Gavai M, Gregory P, Frenkel LD and John JF, Jr. (1998) Effect of the HIV‐1 syncytium-inducing phenotype on disease stage in vertically-infected children. J Med Virol 55: 56–63

    Article  PubMed  CAS  Google Scholar 

  19. Gabuzda D, He J, Ohagen A and Vallat AV (1998) Chemokine receptors in HIV-1 infection of the central nervous system. Sem in Immunol 10: 203–213

    Article  CAS  Google Scholar 

  20. Gabuzda D and Wang J (1999) Chemokine receptors and virus entry in the central nervous sytem. J Neurovirol (in press)

    Google Scholar 

  21. Ghorpade A, Nukuna A, Che M, Haggerty S, Persidsky Y, Carter E, Carhart L, Shafer L and Gendelman HE (1998) Human immunodeficiency virus neurotropism: an analysis of viral replication and cytopathicity for divergent strains in monocytes and microglia. J Virol 72: 3340–3350

    PubMed  CAS  Google Scholar 

  22. Ghorpade A, Xia MQ, Hyman BT, Persidsky Y, Nukuna A, Bock P, Che M, Limoges J, Gendelman HE and MacKay CR (1998) Role of the chemokine receptors CCR3 and CCR5 in human immunodeficiency virus type 1 infection of monocytes and microglia. J Virol 72: 3351–3361

    PubMed  CAS  Google Scholar 

  23. Glabinski AR and Ransohoff RM (1999) Chemokines and chemokine receptors in CNS pathology. J Neuro Virol 5: 3–12

    CAS  Google Scholar 

  24. He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Buscigilo J, Yang X, Hofmann W, Newman W, MacKay CR, Sodroski J, and Gabuzda D (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385: 645–649

    Article  PubMed  CAS  Google Scholar 

  25. Herbein G, Mahlknecht U, Batliwalla F, Gregersen P, Pappas T, Butler J, OíBrien WA and Verdin E (1998) Apoptosis of CD8+ T cells is mediated by macrophages through interaction of HIV gp120 with chemokine receptor CXCR4. Nature 395: 189–194

    Article  PubMed  CAS  Google Scholar 

  26. Hesselgesser J and Horuk R (1999) Chemokine and chemokine receptor expression in the central nervous system. J Neuro Virol 5: 13–26

    CAS  Google Scholar 

  27. Hesselgesser J, Halks-Miller M, DelVecchio V, Peiper SC, Hoxie J, Kolson DL, Taub D and Horuk R (1997) CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol 7: 112–121

    Article  PubMed  CAS  Google Scholar 

  28. Hesselgesser J, Taub D, Baskar P, Greenberg M, Hoxie J, Kolson DL, Horuk R (1998) Neuronal apoptosis induced by HIV-1 gp120 and the chemokine SDF-1 is mediated by the chemokine receptor CXCR4. Curr Biol 8: 595–598

    Article  PubMed  CAS  Google Scholar 

  29. Lavi E, Kolson DL, Ulrich AM, Fu L and Gonzalez-Scarano (1998) Chemokine receptors in the human brain and their relationship to HIV infection. J Neuro Virol 4: 301–311

    CAS  Google Scholar 

  30. Liestoel K, Goplen AK, Dunlop O, Bruun JN and Moehlen J (1998) Kaposi’s sarcoma and protection from HIV dementia. Science 280: 361–362

    CAS  Google Scholar 

  31. Lipton SA and Gendelman HE (1995) Dementia associated with the acquired immunodeficiency syndrome. N Eng J Med 332: 934–940

    Article  CAS  Google Scholar 

  32. Littman DR (1998) Chemokine receptors: keys to AIDS pathogenesis? Cell 93: 677–680

    Article  PubMed  CAS  Google Scholar 

  33. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4‐and SDF-1 deficient mice. Proc Natl Acad Sci USA 95: 9448–9453

    Article  PubMed  CAS  Google Scholar 

  34. McArthur JC, McClernon DR, Cronin MF et al (1997) Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 42: 689–698

    Article  PubMed  CAS  Google Scholar 

  35. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW and Miller RJ (1998) Chemokines regulate hippocampal neuronal signaling and gpi20 neurotoxicity. Proc Natl Acad Sci USA 95: 14500–14505

    Article  PubMed  CAS  Google Scholar 

  36. Meyerhoff DJ, Bloomer C, Cardenas V, Norman D, Weiner MW and Fein G (1999) Elevated subcortical choline metabolites in cognitively and clinically asymptomatic HIV+ patients. Neurology 52: 995–1003

    PubMed  CAS  Google Scholar 

  37. Öhagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, Osathanondh R, Gartner S, Shi B, Shaw G and Gabuzda D (1999) Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: Evidence for a role of the envelope. J Virol 73: 897–906

    Google Scholar 

  38. Power C, McArthur JC, Nath A, Wehrly K, Mayne M, Nishio J, Langelier T, Johnson RT and Chese- bro B (1998) Neuronal death induced by brain-derived human immunodeficiency virus type 1 envelope genes differs between demented and nondemented AIDS patients. J Virol 72: 9045–9053

    PubMed  CAS  Google Scholar 

  39. Price RW (1996) Neurological complications of HIV infection. Lancet 348: 445–452

    Article  PubMed  CAS  Google Scholar 

  40. Price RW, Straprans S (1997) Measuring the ≫viral load≪ in cerebrospinal fluid in human immunodeficiency virus infection: window into brain function? Ann Neurol 42: 6754–678

    Article  Google Scholar 

  41. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS (1997) Unique monocyte subset in patients with AIDS dementia. Lancet 349: 692–695

    Article  PubMed  CAS  Google Scholar 

  42. Rucker J, Edinger AL, Sharron M, Samson M, Lee B, Berson JF, Yi Y, Margulies B, Coliman RG, Doranz BJ, Parmentier M and Doms RW (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 71: 8999–9007

    PubMed  CAS  Google Scholar 

  43. Sacktor NC, Lyles RH, Skolasky RL, Anderson DE, McArthur JC, McFarlane G, Seines OA, Becker JT, Cohen B, Wesch J and Miller EN, for the Multicenter AIDS Cohort Study (1999) Combination antiretroviral therapy improves psychomotor speed performance in HIV-seropositive homosexual men. Neurology 52: 1640–1647

    PubMed  CAS  Google Scholar 

  44. Sanders VJ, Pittman CA, White MG, Wang G, Wiley CA and Achim CL (1998) Chemokines and receptors in HIV encephalitis. AIDS 12: 1021–1026

    Article  PubMed  CAS  Google Scholar 

  45. Schmidtmayerova H, Alfano M, Nuovo G, and Bukrinsky M (1998) Human immunodeficiency virus type 1 T-lymphotropic strains enter macrophages via a CD- and CXCR4-mediated pathway: Replication is restricted at a postentry level. J Virol 72: 4633–4642

    PubMed  CAS  Google Scholar 

  46. Shi B, De Girolami U, He J, Wang S, Lorenzo A, Busciglio J, and Gabuzda D (1996). Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Invest 98: 1979–1990.

    Article  PubMed  CAS  Google Scholar 

  47. Shieh JTC, Albright AV, Sharron M, Gartner S, Strizki J, Doms RW and Gonzalez-Scarano F (1998) Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. J Virol 72: 4243–4249

    PubMed  CAS  Google Scholar 

  48. Simpson DM and Berger JR (1996) Neurologic manifestations of HIV infection. Med Clin N Amer 80 (6): 1363–1395

    PubMed  CAS  Google Scholar 

  49. Sörensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, and Ransohoff RM (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103: 807–815

    Article  PubMed  Google Scholar 

  50. Strizki JM, Albright AV, Sheng H, O’Connor M, Perrin L, and Gonzalez-Scarano F (1996) Infection of primary human microglia and monocyte-derived macrophages with human immunodeficiency virus type 1 isolates: evidence of differential tropism. J Virol 70: 7654–7662

    PubMed  CAS  Google Scholar 

  51. Vallat AV, De Girolami U, He J, Mhashilkar A, Marasco W, Shi B, Gray F, Bell J, Keohane C, Smith TW, and Gabuzda D (1998) Localization of HIV-1 coreceptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol 152: 167–178

    PubMed  CAS  Google Scholar 

  52. Zheng J, Thylin MR, Persidsky Y, Xiong H, Ghorpade A, Che MH, Leisman GB and Gendelman HE (1999) Neuronal destruction in HIV‐1‐associated dementia: Secretory products from HIV‐i infected macrophages affect neuronal function, differentiation, long term potentiation, and viability. ( Submitted )

    Google Scholar 

  53. Zheng J, Thylin MR, Ghorpade A, Xiong H, Persidsky Y, Cotter R, Niemann D, Che MH, Zeng Y-C, Gelbard HA, Shepard RB, Swartz JM, Persidsky Y and Gendelman HE (1999) Intracellular CXCR4 signaling, neuronal apoptosis, and neuropathogenic mechanisms of HIV-i associated dementia. J Neuro Immunology 98: 185–200

    CAS  Google Scholar 

  54. Zou YR, Kottman AH, Koruda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595–599

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gabuzda, D. (2000). HIV Neuropathogenesis. In: Brockmeyer, N.H., Hoffmann, K., Reimann, G., Stücker, M., Altmeyer, P., Brodt, R. (eds) HIV-Infekt. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59683-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59683-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64082-7

  • Online ISBN: 978-3-642-59683-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics