Skip to main content

Transcription Factor Expression in Lymphocyte Development: Clues to the Evolutionary Origins of Lymphoid Cell Lineages?

  • Chapter
Origin and Evolution of the Vertebrate Immune System

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 248))

Abstract

Lymphocyte development provides an excellent model system for studying the evolutionary divergence of cell lineages. Based on their appearance in vertebrate phylogeny, the origins of lymphoid cell lineages are likely to lie in events which occurred during a defined range of time at least 450 million years ago. The dramatic emergence of both B cells and T cells in the cartilaginous fish (Litman et al. 1999) indicates the occurrence of at least one major event pivotal for the development of lymphocytes as we know them, after the divergence of the vertebrates from the other chordates but before the diversification of the jawed vertebrates. One such event may have been the acquisition, perhaps by horizontal transfer, of the recombination-activating genes (RAGs; Agrawal et al. 1998). The large-scale gene duplication events which are believed to have occurred at approximately this same time (Holland et al. 1994; Pebusque et al. 1998) may have provided another powerful mechanism for rapid evolutionary change. Lymphoid development is dependent upon networks of transcription factors, which serve not only to activate a series of temporally controlled gene batteries during differentiation but also to stabilize the mature phenotype. These transcription factors are generally members of multigene families whose origins are far more ancient than the lymphoid lineages in which they operate and provide a bridge across phylogenetic distances which have been thus far inaccessible to the study of rearranging antigen receptors. Furthermore, it is likely that duplication and/or divergence of both the cis-regulatory regions and the structural portions of transcription factor family members has contributed to the diversification of hematopoietic cell types in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751

    Article  PubMed  CAS  Google Scholar 

  2. Ardavin C, Wu L, Li CL, Shortman K (1993) Thymic dendritic cells and T cells develop simultaneously in the thymus from a common precursor population. Nature 362: 761–763

    Article  PubMed  CAS  Google Scholar 

  3. Bain G, Engel I, Robanus Maandag EC, to Ride HP, Voland JR, Sharp LL, Chun J, Huey B, Pinkel D, Murre C (1997) E2A deficiency leads to abnormalities in alphabets T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17: 4782–4791

    PubMed  CAS  Google Scholar 

  4. Bain G, Murre C (1998) The role of E-proteins in B- and T-lymphocyte development. Semin Immunol 10: 143–153

    Article  PubMed  CAS  Google Scholar 

  5. Benezra R, Davis RL, Lockshon D, Turner DL, Weintraub H (1990) The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59

    Article  PubMed  CAS  Google Scholar 

  6. Borrello MA, Phipps RP (1996) The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages [see comments]. Immunol Today 17: 471–475

    Article  PubMed  CAS  Google Scholar 

  7. Carlyle JR, Michie AM, Furlonger C, Nakano T, Lenardo MJ, Paige CJ, Zûfiiga-Pflücker JC (1997) Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J Exp Med 186: 173–182

    Article  PubMed  CAS  Google Scholar 

  8. Chen HM, Gonzalez DA, Radomska HS, Voso MT, Sun Z, Zhang P, Zhang DE, Tenen DG (1998) Two promoters direct expression of the murine Spi-B gene, an Ets family transcription factor. Gene 207: 209–218

    Article  PubMed  CAS  Google Scholar 

  9. Chen ZQ, Kan NC, Pribyl L, Lautenberger JA, Moudrianakis E, Papas TS (1988) Molecular cloning of the ets proto-oncogene of the sea urchin and analysis of its developmental expression. Dev Biol 125: 432–440

    Article  PubMed  CAS  Google Scholar 

  10. Cheng T, Shen H, Giokas D, Gere J, Tenen DG, Scadden DT (1996) Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells. Proc Natl Acad Sci USA 93: 13158–13163

    Article  PubMed  CAS  Google Scholar 

  11. Cronmiller C, Schedl P, Cline TW(1988) Molecular characterization of daughterless, a Drosophila sex determination gene with multiple roles in development. Genes Dev 2: 1666–1676

    Google Scholar 

  12. Cross MA, Heyworth CM, Dexter TM (1997) How do stem cells decide what to do? Ciba Found Symp 204: 3–14

    PubMed  CAS  Google Scholar 

  13. Cross MA, Heyworth CM, Murrell AM, Bockamp EO, Dexter TM, Green AR (1994) Expression of lineage restricted transcription factors precedes lineage specific differentiation in a multipotent haemopoietic progenitor cell line. Oncogene 9: 3013–3016

    PubMed  CAS  Google Scholar 

  14. Crozatier M, Valle D, Dubois L, Ibnsouda S, Vincent A (1996) Collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain. Curr Biol 6: 707–718

    Article  PubMed  CAS  Google Scholar 

  15. Czerny T, Bouchard M, Kozmik Z, Busslinger M (1997) The characterization of novel Pax genes of the sea urchin and Drosophila reveal an ancient evolutionary origin of the Pax2/5/8 subfamily. Mech Dev 67: 179–192

    Article  PubMed  CAS  Google Scholar 

  16. Dahl E, Koseki H, Balling R (1997) Pax genes and organogenesis. Bioessays 19: 755–765

    Article  PubMed  CAS  Google Scholar 

  17. Davidson EH (1994) Stepwise evolution of major functional systems in vertebrates, including the immune system. In: Hoffmann JA, Janeway CA Jr, Natori S (eds) Phylogenetic Perspectives in Immunity: the Insect Host Defense. R.G. Landes Company Austin

    Google Scholar 

  18. Degnan BM, Degnan SM, Naganuma T, Morse DE (1993) The ets multigene family is conserved throughout the Metazoa. Nucleic Acids Res 21: 3479–3484

    Article  PubMed  CAS  Google Scholar 

  19. Dubois L, Bally-Cuif L, Crozatier M, Moreau J, Paquereau L, Vincent A (1998) XCoe2, a transcription factor of the Col/Olf-1/EBF family involved in the specification of primary neurons in Xenopus. Curr Biol 8: 199–209

    Article  PubMed  CAS  Google Scholar 

  20. Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telendephalon of mouse, chick, turtle and frog embryos: implications’ for the evolution of telencephalic subdivisions in amniotes. Development 125: 2099–2111

    PubMed  CAS  Google Scholar 

  21. Georgopoulos K, Bigby M, Wang JH, Molnar A, Wu P, Winandy S, Sharpe A (1994) The Ikaros gene is required for the development of all lymphoid lineages. Cell 79: 143–156

    Article  PubMed  CAS  Google Scholar 

  22. Greenhalgh P, Steiner LA (1995) Recombination activating gene 1 ( Ragl) in zebrafish and shark. Immunogenetics 41: 54–55

    Google Scholar 

  23. Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 7: 760–773

    Article  PubMed  CAS  Google Scholar 

  24. Hansen JD (1997) Characterization of rainbow trout terminal deoxynucleotidyl transferase structure and expression. TdT and RAG 1 co-expression define the trout primary lymphoid tissues. Immunogenetics 46: 367–375

    Article  PubMed  CAS  Google Scholar 

  25. Hansen JD, Strassburger P, Du Pasquier L (1997) Conservation of a master hematopoietic switch gene during vertebrate evolution: isolation and characterization of Ikaros from teleost and amphibian species. Eur J Immunol 27: 3049–3058

    Article  PubMed  CAS  Google Scholar 

  26. Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 125–133

    Google Scholar 

  27. Hu JS, Olson EN, Kingston RE (1992) HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol 12: 1031–1042

    PubMed  CAS  Google Scholar 

  28. Hu M, Krause D, Greaves M, Sharkis S, Dexter M, Heyworth C, Enver T (1997) Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev 11: 774–785

    Article  PubMed  CAS  Google Scholar 

  29. Kee BL, Murre C (1998) Induction of early B cell factor (EBF) and multiple B lineage genes by the basic helix-loop-helix transcription factor E12. J Exp Med 188: 699–713

    Article  PubMed  CAS  Google Scholar 

  30. Kherrouche Z, Beuscart A, Huguet C, Flourens A, Moreau-Gachelin F, Stehelin D, Coll J (1998) Isolation and characterization of a chicken homologue of the Spi-1/PU.1 transcription factor. Oncogene 16: 1357–1367

    Article  PubMed  CAS  Google Scholar 

  31. Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61: 113–124

    Article  PubMed  CAS  Google Scholar 

  32. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91: 661–672

    Article  PubMed  CAS  Google Scholar 

  33. Lautenberger JA, Burdett LA, Gunnell MA, Qi S, Watson DK, O’Brien SJ, Papas TS (1992) Genomic dispersal of the ets gene family during metazoan evolution. Oncogene 7: 1713–1719

    PubMed  CAS  Google Scholar 

  34. Li X, Noll M (1994) Evolution of distinct developmental functions of three Drosophila genes by acquisition of different cis-regulatory regions. Nature 367: 83–87

    Article  PubMed  CAS  Google Scholar 

  35. Lin H, Grosschedl R (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376: 263–267

    Article  PubMed  CAS  Google Scholar 

  36. Litman GW, Anderson MK, Rast JP (1999) Evolution of Antigen Binding Receptors. Ann Rev Immunol, 17: 109–147

    Article  CAS  Google Scholar 

  37. M.K. Anderson and E.V. Rothenberg

    Google Scholar 

  38. Liu Y, Ray SK, Yang XQ, Luntz-Leybman V, Chiu IM (1998) A splice variant of E2–2 basic helix-loophelix protein represses the brain-specific fibroblast growth factor 1 promoter through the binding to an imperfect E-box. J Biol Chem 273: 19269–19276

    Article  PubMed  CAS  Google Scholar 

  39. Macleod K, Leprince D, Stehelin D (1992) The ets gene family. Trends Biochem Sci 17: 251–256

    Article  PubMed  CAS  Google Scholar 

  40. Magor BG, Wilson MR, Miller NW, Clem LW, Middleton DL, Warr GW (1994) An Ig heavy chain enhancer of the channel catfish Ictalurus punctatus: evolutionary conservation of function but not structure. J Immunol 153: 5556–5563

    PubMed  CAS  Google Scholar 

  41. Martensson A, Martensson IL (1997) Early B cell factor binds to a site critical for lambda5 core enhancer activity. Eur J Immunol 27: 315–320

    Article  PubMed  CAS  Google Scholar 

  42. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658

    PubMed  CAS  Google Scholar 

  43. Mead PE, Kelley CM, Hahn PS, Piedad O, Zon LI (1998) SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 125: 2611–2620

    PubMed  CAS  Google Scholar 

  44. Minehart PL, Magasanik B (1991) Sequence and expression of GLN3, a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 11: 6216–6228

    PubMed  CAS  Google Scholar 

  45. Murre C, McCaw PS, Baltimore D (1989) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56: 777–783

    Google Scholar 

  46. Nielsen AL, Pallisgaard N, Pedersen FS, Jorgensen P (1992) Murine helix-loop-helix transcriptional activator proteins binding to the E-box motif of the Akv murine-leukemia virus enhancer identified by cDNA cloning. Mol Cell Biol 12: 3449–3459

    PubMed  CAS  Google Scholar 

  47. Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR (1996) AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. Cell 84: 321–330

    Article  PubMed  CAS  Google Scholar 

  48. Page ST, Bogatzki LY, Hamerman JA, Sweenie CH, Hogarth PJ, Malissen M, Perlmutter RM, Pullen AM (1998) Intestinal intraepithelial lymphocytes include precursors committed to the T cell receptor alpha beta lineage. Proc Natl Acad Sci USA 95: 9459–9464

    Article  PubMed  CAS  Google Scholar 

  49. Pancer Z, Rast JP, Davidson EH (1999) Origins of Immunity: Transcription Factors and Homologues of Effector Genes of the Vertebrate Immune System Expressed in Sea Urchin Coelomocytes. Immunogenetics 49: 773–786

    Google Scholar 

  50. Pebusque MJ, Coulier F, Birnbaum D, Pontarotti P (1998) Ancient large-scale genome duplications: phylogenetic and linkage analyses shed light on chordate genome evolution. Mol Biol Evol 15: 1145–1159

    PubMed  CAS  Google Scholar 

  51. Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125: 3063–3074

    PubMed  CAS  Google Scholar 

  52. Prasad BC, Ye B, Zackhary R, Schrader K, Seydoux G, Reed RR (1998) une-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. Development 125: 1561–1568

    Google Scholar 

  53. Qi S, Chen ZQ, Papas TS, Lautenberger JA (1992) The sea urchin erg homolog defines a highly conserved erg-specific domain. DNA Seq 3: 127–9

    PubMed  CAS  Google Scholar 

  54. Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW (1997) alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6: 1–11

    Google Scholar 

  55. Ray D, Bosselut R, Ghysdael J, Mattei MG, Tavitian A, Moreau-Gachelin F (1992) Characterization of Spi-B, a transcription factor related to the putative oncoprotein Spi-1/PU.1. Mol Cell Biol 12: 4297–4304

    PubMed  CAS  Google Scholar 

  56. Ray D, Culine S, Tavitain A, Moreau-Gachelin F (1990) The human homologue of the putative protooncogene Spi-1: characterization and expression in tumors [published erratum appears in Oncogene 1990 Oct;5 (10):1611–2]. Oncogene 5: 663–668

    PubMed  CAS  Google Scholar 

  57. Ray-Gallet D, Tavitian A, Moreau-Gachelin F (1996) An alternatively spliced isoform of the Spi-B transcription factor. Biochem Biophys Res Common 223: 257–263

    Article  CAS  Google Scholar 

  58. Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577

    Article  PubMed  CAS  Google Scholar 

  59. Seshasayee D, Gaines P, Wojchowski DM (1998) GATA-I dominantly activates a program of erythroid gene expression in factor-dependent myeloid FDCW2 cells. Mol Cell Biol 18: 3278–3288

    PubMed  CAS  Google Scholar 

  60. Shain DH, Neuman T, Zuber MX (1997) Embryonic expression and evolution of duplicated E-protein genes in Xenopus laevis: parallels with ancestral E-protein genes. Genetics 146: 345–353

    PubMed  CAS  Google Scholar 

  61. Sigvardsson M, O’Riordan M, Grosschedl R (1997) EBF and E47 collaborate to induce expression of the endogenous immunoglobulin surrogate light chain genes. Immunity 7: 25–36

    Article  PubMed  CAS  Google Scholar 

  62. Simon MC (1998) PU.1 and hematopoiesis: lessons learned from gene targeting experiments. Semin Immunol 10: 111–8

    Article  PubMed  CAS  Google Scholar 

  63. Skerjanc IS, Truong J, Filion P, McBurney MW (1996) A splice variant of the ITF-2 transcript encodes a transcription factor that inhibits MyoD activity. J Biol Chem 271: 3555–3561

    Article  PubMed  CAS  Google Scholar 

  64. Su GH, Chen HM, Muthusamy N, Garrett-Sinha LA, Baunoch D, Tenen DG, Simon MC (1997) Defective B cell receptor-mediated responses in mice lacking the Ets protein, Spi-B. EMBO J 16: 7118–7129

    Google Scholar 

  65. Su GH, Ip HS, Cobb BS, Lu MM, Chen HM, Simon MC (1996) The Ets protein Spi-B is expressed exclusively in B cells and T cells during development. J Exp Med 184: 203–214

    Article  PubMed  CAS  Google Scholar 

  66. Takahashi S, Komeno T, Suwabe N, Yoh K, Nakajima O, Nishimura S, Kuroha T, Nagasawa T, Yamamoto M (1998) Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo. Blood 92:434 142

    Google Scholar 

  67. Ting CN, Olson MC, Barton KP, Leiden JM (1996) Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384: 474–478

    Article  PubMed  CAS  Google Scholar 

  68. Tracey WD Jr, Pepling ME, Horb ME, Thomsen GH, Gergen JP (1998) A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood. Development 125: 1371–1380

    PubMed  CAS  Google Scholar 

  69. Trede NS, Zon LI (1998) Development of T-cells during fish embryogenesis. Dev Comp Immunol 22: 253–263

    Article  PubMed  CAS  Google Scholar 

  70. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371: 221–226

    Article  PubMed  CAS  Google Scholar 

  71. Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking PaxS/BSAP. Cell 79: 901–912

    Article  PubMed  CAS  Google Scholar 

  72. Voura EB, Billia F, Iscove NN, Hawley RG (1997) Expression mapping of adhesion receptor genes during differentiation of individual hematopoietic precursors. Exp Hematol 25: 1172–1179

    PubMed  CAS  Google Scholar 

  73. Wang H, Diamond RA, Rothenberg EV (1998) Cross-lineage expression of Ig-beta (B29) in thymocytes: positive and negative gene regulation to establish T cell identity. Proc Natl Acad Sci USA 95: 6831–6836

    Article  PubMed  CAS  Google Scholar 

  74. Wang JH, Nichogiannopoulou A, Wu L, Sun L, Sharpe AH, Bigby M, Georgopoulos K (1996) Selective defects in the development of the fetal and adult lymphoid system in mice with an Ikaros null mutation. Immunity 5: 537–549

    Article  PubMed  CAS  Google Scholar 

  75. Wang SS, Tsai RYL, Reed RR (1997) The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J Neurosci 17: 4149–4158

    PubMed  CAS  Google Scholar 

  76. Weill JC, Reynaud CA (1998) Galt versus bone marrow models of B cell ontogeny. Dev Comp Immunol 22: 379–385

    Article  PubMed  CAS  Google Scholar 

  77. Weiss MJ, Keller G, Orkin SH (1994) Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 8: 1184–1197

    Article  PubMed  CAS  Google Scholar 

  78. Wu L, Li CL, Shortman K (1996) Thymic dendritic cell precursors: relationship to the T lymphocyte lineage and phenotype of the dendritic cell progeny. J Exp Med 184: 903–911

    Article  PubMed  CAS  Google Scholar 

  79. Wulbeck C, Fromental-Ramain C, Campos-Ortega JA (1994) The HLH domain of a zebrafish HE12 homologue can partially substitute for functions of the HLH domain of Drosophila DAUGHTERLESS. Mech Dev 46: 73–85

    Article  PubMed  CAS  Google Scholar 

  80. Zhuang Y, Barndt RJ, Pan L, Kelley R, Dai M (1998) Functional replacement of the mouse E2A gene with a human HEB cDNA. Mol Cell Biol 18: 3340–3349

    PubMed  CAS  Google Scholar 

  81. Zhuang Y, Cheng P, Weintraub H (1996) B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2–2, and HEB. Mol Cell Biol 16: 2898–2905

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, M.K., Rothenberg, E.V. (2000). Transcription Factor Expression in Lymphocyte Development: Clues to the Evolutionary Origins of Lymphoid Cell Lineages?. In: Du Pasquier, L., Litman, G.W. (eds) Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology and Immunology, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59674-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59674-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64078-0

  • Online ISBN: 978-3-642-59674-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics