Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 248))

Abstract

Chondrichthyes, or cartilaginous fish, are a highly successful group of vertebrates. Most extant species are long-lived, display an amazing diversity, and fill all predatory oceanic niches (and a few other niches as well; Wilson 1992). For our purposes, they are the oldest group of vertebrates shown to possess an adaptive immune system grounded on immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex (MHC) class I and class II molecules (Litman et al. 1999). The examination of these molecules and genes, the mechanisms of recombination and the somatic mutation of antigen receptor genes, as well as the manner by which immune responses occur in secondary (and other?) lymphoid tissues, in comparison to vertebrates of other classes, allow us to develop paradigms to illustrate the immune system in the common ancestor of all jawed vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson MK, Amemiya CT, Luer CA, Litman RJ, Rast JP, Niimura Y, Litman GW (1994) Complete genomic sequence and patterns of transcription of a member of an unusual family of closely related, chromosomally dispersed Ig gene clusters in Raja. Int Immunol 6: 1661–1670

    Article  PubMed  CAS  Google Scholar 

  • Anderson MK, Shamblott MJ, Litman RT, Litman GW (1995) Generation of immunoglobulin light chain diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity. J Exp Med 182: 109–119

    Article  PubMed  CAS  Google Scholar 

  • Anderson MK, Strong SJ, Litman RT, Luer CA, Amemiya CT, Rast JP, Litman GW (1999) A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and Ig NARC genes. Immunogenetics 49: 56–67

    Article  PubMed  CAS  Google Scholar 

  • Bartl S, Weissman IL (1994) Isolation and characterization of the major histocompatibility complex class IIB genes from the nurse shark. Proc Natl Acad Sci 91: 262–266

    Article  PubMed  CAS  Google Scholar 

  • Bard S, Bash MA, Flajnik MF, Ohta Y (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159: 6097–6104

    Google Scholar 

  • Bartl S (1998) What sharks can tell us about the evolution of MHC genes. Immunol Rev 166: 317–331

    Article  PubMed  CAS  Google Scholar 

  • Bernstein RM, Schluter SF, Shen S, Marchalonis JJ (1996) A new high molecular weight immunoglobulin lass from the carcharhine shark: implications for the properties of the primordial immunoglobulin. Proc Natl Acad Sci USA 93: 3289–3293

    Article  CAS  Google Scholar 

  • Blank SE, Leslie GA, Clem LW (1972) Antibody affinity and valence in viral neutralization. J Immunol 108: 665–673

    PubMed  CAS  Google Scholar 

  • Borysenko M, Hildemann WH (1970) Reaction to skin allografts in the horn shark, Heterodontus francisci. Transplantation 10: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Briles WE, Goto R, Auffray C, Miller M (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37: 408–414

    Article  PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate Paleontology and Evolution. Freeman. New York

    Google Scholar 

  • Chiba A, Torroba M, Honma Y, Zapata AG (1989) Occurrence of lymphohaematopoietic tissue in the eninges of the stingray Dasyatis akajei (Elasmobranchii, Chondricthyes). Amer J Anat 183: 268–276

    Article  Google Scholar 

  • Chien Y-H, Iwashima M, Kaplan KB, Elliott JF, Davis MM (1987) A new T-cell receptor gene located within the a locus and expressed early in T-cell differentiation. Nature 327: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Clem LW, Sigel MM (1963) Comparative immunochemical and immunological reactions in marine fishes with soluble, viral, and bacterial antigens. Fed Proc 22: 1138–1144

    PubMed  CAS  Google Scholar 

  • Clem LW, Small PA (1967) Phylogeny of immunoglobulin structure and function I. Immunoglobulins of the lemon shark. J Exp Med 125: 893–920

    Article  PubMed  CAS  Google Scholar 

  • Clem LW, DeBoutaud F, Sigel MM (1967) Phylogeny of immunoglobulin structure and function II Immunoglobulins of the nurse shark. J Immunol 99: 1226–1235

    PubMed  CAS  Google Scholar 

  • Clem LW, Leslie GA (1971) Production of 19S IgM antibodies with restricted heterogeneity from sharks. Proc Natl Acad Sci 68: 139–141

    Article  PubMed  CAS  Google Scholar 

  • Desmyter A, Transue TR, Ghahroudi MA, Thi MHD, Poortmans F, Hamers R, Muyldermans S, Wyns L (1996) Crystal structure of a camel single-domain VH antibody fragment in complex with lysozyme. Nature Struc Biol 3: 803–811

    Article  CAS  Google Scholar 

  • Diaz M, Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor (NAR) gene in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci 95: 14343–14348

    Article  PubMed  CAS  Google Scholar 

  • Diaz M, Velez J, Singh M, Cerny J, Flajnik MF (1999) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 11: in press

    Google Scholar 

  • Du Pasquier L, Wilson M, Greenberg A, Flajnik MJ (1998) Somatic mutation in ectothermic vertebrates. Curr Top Microbiol Immunol 299: 199–216

    Google Scholar 

  • Durdik J, Moore MW, Seising E (1984) Novel kappa light-chain gene rearrangements in mouse lambda light chain-producing B lymphocytes. Nature 307: 749–752

    Article  PubMed  CAS  Google Scholar 

  • Fidler JE, Clem LW, Small Jr PA (1969) Immunoglobulin synthesis in neonatal nurse sharks (Ginglynaostoma cirratum) Comp Biochem Physiol 31: 365–371

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12: 4385–4396

    PubMed  CAS  Google Scholar 

  • Flajnik MF (1998) Churchill and the immune system of ectothermic vertebrates. Immunol Rev 166: 5–14

    Article  PubMed  CAS  Google Scholar 

  • Flajnik MF, Ohta Y, Namikawa-Yamada C, Nonaka M (1999) Insight into the primordial MHC from studies in ectothermic vertebrates. Immunol Rev 167: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Frommel D, Litman GW, Finstad J, Good RA (1971) The evolution of the immune response. XI. The immunoglobulin of the horned shark, Heterodontus francisci: purification, characterization and structural requirement for antibody activity. J Immunol 106: 1234–1243

    PubMed  CAS  Google Scholar 

  • Fuller L, Murray J, Jensen JA (1978) Isolation from nurse shark serum of immune 7S antibodies with two different molecular weight H-chains. Immunochemistry 15: 251–259

    Article  PubMed  CAS  Google Scholar 

  • Gitlin D, Perricelli A, Gitlin JD (1973) Immunoglobulin synthesis in fetal sharks. Comp Biochem Physiol 45: 247–256

    Article  CAS  Google Scholar 

  • Good RA, Finstad J, Pollara B, Gabrielsen AE (1966) Morphologic studies on the lymphoid tissues among the lower vertebrates. In: Smith RT, Miescher PA, Good RA (eds) Phylogeny of immunity. University of Florida Press, Gainesville

    Google Scholar 

  • Good RA, Finstad J (1967) The phylogenetic development of immune responses and the germinal center system. In: Cottier H, Odartchenko N, Schindler R, Congdon CC (eds) Germinal Centers in Immune Responses. Springer-Verlag, New York

    Google Scholar 

  • Greenberg AS, Steiner LA, Kasahara M, Flajnik MF (1993) Isolation of a shark immunoglobulin light chain cDNA clone encoding a protein resembling mammalian kappa light chains: implications for the evolution of light chains. Proc Natl Acad Sci 10603–10607

    Google Scholar 

  • Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Greenberg AS, Hughes AL, Guo J, Avila D, McKinney EC, Flajnik MF (1996) A novel “chimeric-antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur J Immunol 26: 1123–1129

    Article  PubMed  CAS  Google Scholar 

  • Harding FA, Cohen N, Litman GW (1990a) Immunoglobulin heavy chain gene organization and complexity in the skate. Raja ernacea. Nucl Acids Res 18: 1015–1020

    Article  CAS  Google Scholar 

  • Harding FA, Amemiya CT, Litman RT, Cohen N, Litman GW (1990b) Two distinct immunoglobulin heavy chain isotypes in a primitive cartilaginous fish, Raja ernacea. Nucl Acids Res 18: 6369–6376

    Article  CAS  Google Scholar 

  • Hashimoto K, Okamura K. Yamaguchi H, Ototake M, Nakanishi T, Kurosawa Y (1999) Conservation and diversification of MHC class I and its related molecules in vertebrates. Immunol Rev 167: 81–100

    Article  PubMed  CAS  Google Scholar 

  • Hawke NA, Rast JP, Litman GW (1996) Extensive diversity of transcribed TCR-β in a phylogenetically primitive vertebrate. J Immunol 156: 2458–2464

    PubMed  CAS  Google Scholar 

  • Haynes L, McKinney EC (1991) Shark spontaneous cytotoxicity: characterization of the regulatory cell. Devel Comp Immunol 15: 123–134

    Article  CAS  Google Scholar 

  • Hildemann WH (1970) Transplantation immunity in fishes: Agnatha, Chondrichthyes and Osteichthyes. Transpl Proc 2: 253–259

    CAS  Google Scholar 

  • Hinds KR, Litman GW (1986) Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320: 546–549

    Article  PubMed  CAS  Google Scholar 

  • Hinds-Frey KR, Nishikata H, Litman RT, Litman GW (1993) Somatic variation precedes extensive diversification of germline sequences and combinatorial joining in the evolution of immunoglobulin heavy chain diversity. J Exp Med 178: 815–824

    Article  PubMed  CAS  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1992) Complete sequence of a cDNA clone specifying sandbar shark immunoglobulin light chain: gene organization and implications for the evolution of light chains. Proc Natl Acad Sci 89: 276–280

    Article  PubMed  CAS  Google Scholar 

  • Hohman VS, Schuchman DB, Schluter SF, Marchalonis JJ (1993) Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of rearrangement. Proc Natl Acad Sci 90: 9882–9886

    Article  PubMed  CAS  Google Scholar 

  • Hohman VS, Schluter SF, Marchalonis JJ (1995) Diversity of Ig light chain clusters in the sandbar shark (Carcharhinus plumbeus). J Immunol 155: 3922–3928

    PubMed  CAS  Google Scholar 

  • Hsu E, Flajnik MF, Du Pasquier L (1985) A third immunoglobulin class in amphibians. J Immunol 135: 1998–2004

    PubMed  CAS  Google Scholar 

  • Hsu E (1998) Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol Rev 162: 25–36

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL and Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167–170

    Article  PubMed  CAS  Google Scholar 

  • Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13: 11–16

    Article  PubMed  CAS  Google Scholar 

  • Kandil E, Namikawa C, Nonaka M, Greenberg AS, Flajnik MF, Ishibashi T, Kasahara M (1996) Isolation of low molecular mass polypeptide complementary cDNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation. J Immunol 159: 734–740

    Google Scholar 

  • Kasahara M, Vasquez M, Sato K, McKinney EC, Flajnik MF (1992) Evolution of major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish. Proc Natl Acad Sci 89: 6688–6692

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, McKinney EC, Flajnik MF, Ishibashi T (1993) The evolutionary origin of major histocompatibility complex: polymorphism of class II α chain genes in the cartilaginous fish. Eur J Immonol 23: 2160–2165

    Article  CAS  Google Scholar 

  • Klapper DG. Clem LW (1972) Studies on the mild reduction of shark polymeric and monomeric IgM. Comp Biochem Physiol 42: 241–247

    Article  CAS  Google Scholar 

  • Klapper DG, Clem LW (1977) Phylogeny of immunoglobulin structure and function: Characterization of the cysteine-containing peptide involved in the pentamerization of shark IgM. Devel Comp Immunol 1: 81–92

    Article  CAS  Google Scholar 

  • Klein J (1998) In an immunological twilight zone. Proc Natl Acad Sci 95: 11504–11505

    Article  PubMed  CAS  Google Scholar 

  • Klein J and Sato A (1998) Birth of the major histocompatibility complex. Scand J Immunol 47:199–209

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Tomonaga S, Kajii T (1984) A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate Raja kenojei: isolation and characterization. Mol Immunol 21: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Tomonaga S, Teshima K, Kajii T (1985) Ontogenic studies on the appearance of two classes of immunoglobulin-fonning cells in the spleen of the Aleutian skate, Bathyraja aleutica, a cartilaginous fish. Eur J Immunol 15: 952–956

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Tomonaga S (1988) The second immunoglobulin class is commonly present in cartilaginous fish belonging to the order Rajiformes. Mol Immunol 2: 115–120

    Google Scholar 

  • Kobayashi K, Tomonaga S, Tanaka S (1992) Identification of a second immunoglobulin in the most primitive shark, the frill shark, Chlattwdoselachus anguineus. Devel Comp Immunol 16: 295–299

    Article  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman R, Shamblott MJ, Litman GW (1987) Extensive families of constant region genes in phylogenetically primitive vertebrate indicate an additional level of immunoglobulin complexity. Proc Natl Acad Sci 84: 5868–5872

    Article  PubMed  CAS  Google Scholar 

  • Kokubu F, Hinds K, Litman RT, Shamblott MJ, Litman GW (1988a) Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7: 1979–1988

    CAS  Google Scholar 

  • Kokubu F, Litman RT, Shamblott MJ, Hinds K, Litman GW (1988b) Diverse organization of iimnunoglobulin VH loci in a primitive vertebrate. EMBO J 7: 3413–3422

    CAS  Google Scholar 

  • Linton RI, Decker DJ, Klinman NR (1989) Primary antibody-forming cells and secondary B cells are generated from separate precursor cell populations. Cell 59: 1049–1059

    Article  Google Scholar 

  • Litman GW, Berger L, Murphy K, Litman RT, Hinds KR, Erickson BW (1985) Immunoglobulin VH structure and diversity in Heterodontus, a phylogenetically primitive shark. Proc Natl Acad Sci 82: 2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Litman GW, Anderson MK, Rast JP (1999) Evolution of antigen-binding-receptors. Annu Rev Immunol 17: 109–147

    Article  PubMed  CAS  Google Scholar 

  • Lloyd-Evans P (1993) Development of the lymphomyeloid system in the dogfish, Seyllorhinus Canicula. Devel Comp Immunol 17: 501–514

    Article  CAS  Google Scholar 

  • Luer CA, Walsh CJ, Bodine AB, Wyffels JT, Scott TR (1995) The elasmobranch thymus: anatomical, histological, and preliminary functional characterization. J Exp Zool 273: 342–254

    Article  Google Scholar 

  • Magor KE, Warr GW, Middleton DL, Wilson MR, Higgins DA (1992) Structural relationship between the two IgY of the duck Anas platnrhynchos: molecular genetic evidence. J Immunol 149: 2627–2633

    PubMed  CAS  Google Scholar 

  • Mäkelä O, Litman GW (1980) Lack of heterogeneity in anti-hapten antibodies of a phylogenetically primitive shark. Nature 287: 639–640

    Article  PubMed  Google Scholar 

  • Marchalonis J, Edelman GM (1965) Phylogentic origins of antibody structure I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus Canis). J Exp Med 122: 601–618

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis J, Edelman GM (1966) Polypeptide chains of the immunoglobulins from the smooth dogfish (Mustelus canis). Science 154: 1567–1568

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF, Rosenshein IL, Wang A-C (1988) Partial characterization of immunoglobulin light chains of carcharhine sharks: evidence for phylogenetic conservation of variable region and divergence of constant region structure. Devel Comp Immunol 12: 65–74

    Article  CAS  Google Scholar 

  • Marchalonis JJ, Hohman VS, Thomas C, Schluter SF (1993) Antibody production in sharks and humans: a role for natural antibodies. Devel Comp Immunol 17: 41–53

    Article  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF, Bernstein RM, Shen S, Edmundson AB (1998a) Phylogenetic emergence and molecular evolution of the immunoglobulin family. Adv Immunol 70: 417–506

    Article  CAS  Google Scholar 

  • Marchalonis JJ, Schluter SF, Bernstein RM, Hohman VS (1998b) Antibodies of sharks: revolution and evolution. Immunol Rev 166: 103–122

    Article  CAS  Google Scholar 

  • Martin AP, Naylor GJP, Palumbi SR (1992) Rates of mitochondrial DNA evolution are slow compared with mammals. Nature 357: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Matthews D (1996) Sharks! The mysterious killers. Random House, New York

    Google Scholar 

  • Morrow WJW, Harris JE, Pulsford A (1982) Immunological responses of the dogfish (Scyliorhituls Canicula L.) to cellular antigens. Acta Zool 63: 153–159

    Article  Google Scholar 

  • Okamura K, Ototake M, Nakanishi T, Kurosawa Y, Hashimoto K (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7: 777–790

    Article  PubMed  CAS  Google Scholar 

  • Parham P (1995) The duck’s dilemma. Nature 374: 16–17

    Article  PubMed  CAS  Google Scholar 

  • Perey DYE, Finstad J, Pollara B, Good RA (1968) Evolution of the immune response. VI. First and second set skin homograft reactions in primitive fishes. Lab Invest 19: 591–597

    PubMed  CAS  Google Scholar 

  • Pettey CL, McKinney EC (1983) Temperature and cellular regulation of spontaneous cytotoxicity in the shark. Eur J Immunol 13: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Anderson MK, Ota T, Litman RT, Margittai M, Shamblott MJ, Litman GW (1994) Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics 40: 83–99

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Litman GW (1994) T cell receptor homologs are present in the most primitive jawed vertebrates. Proc Natl Acad Sci 91: 9248–9252

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Anderson MK, Strong SJ, Luer C, Litman RT, Litman GW (1997) α, β, γ, and δT cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Rast JP, Amemiya CT, Litman RT, Strong SJ, Litman GW (1998) Distinct patterns of IgH structure and organization in a divergent line of cartilaginous fishes. Immunogenetics 47: 234–245

    Article  PubMed  CAS  Google Scholar 

  • Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC, Flajnik MF (1998) Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci 96: 11804–11809

    Article  Google Scholar 

  • Schluter SF, Bernstein RM, Marchalonis JJ (1997) Molecular origins and evolution of immunoglobulin heavy-chain genes of jawed vertebrates. Immunol Today 81: 543–549

    Article  Google Scholar 

  • Schwager J, Burckert N, Schwager M, Wilson M (1992) Evolution of immunoglobulin light chain genes: analysis of Xenopus IgL isotypes and their contribution to antibody diversity. EMBO J 10: 505–511

    Google Scholar 

  • Shamblott MJ, Litman GW (1989a) Complete nucleotide sequence of primitive vertebrate immunoglobulin light chain genes. Proc Natl Acad Sci 86: 4684–4688

    Article  CAS  Google Scholar 

  • Shamblott MJ, Litman GW (1989b) Genomic organization and sequence of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization. EMBO J 8: 3733–3739

    CAS  Google Scholar 

  • Shankey TV, Clem LW (1980a) Phylogeny of immunoglobulin structure and function VIII. Intermolecular heterogeneity of shark 19S IgM antibodies to pneumococcal polysaccharide. Mol Immunol 17: 365–375

    Article  CAS  Google Scholar 

  • Shankey TV, Clem LW (1980b) Phylogeny of immunoglobulin structure and function IX. Intramolecular heterogeneity of shark 19 S IgM antibodies to the dinitrophenol hapten. J Immunol 125: 2690–2698

    CAS  Google Scholar 

  • Sigel MM, Clem LW (1966) Immunological anamnesis in elasmobranchs. In: Smith RT, Miescher PA, Good RA (eds) Phylogeny of Immunity. University of Florida Press, Gainesville

    Google Scholar 

  • Sitnikova T, Nei M (1998) Evolution of immunoglobulin kappa chain variable region genes in vertebrates. Mol Biol Evol 15: 50–60

    PubMed  CAS  Google Scholar 

  • Small PA, Klapper DG, Clem LW (1970) Half-lives, body distribution, and lack of interconversion of serum 19S and 7S IgM of sharks. J Immunol 105: 29–37

    PubMed  CAS  Google Scholar 

  • Stanton T, Sledge C, Capra JD, Woods R, Clem LW, Hood L (1974) A sequence restriction in the variable region of immunoglobulin light chains from sharks, birds, and mammals. J Immunol 112: 633–640

    PubMed  CAS  Google Scholar 

  • Tomonaga S, Kobayashi K, Hagiwara K, Yamaguchi K, Awaya K (1986) Gut-associated lymphoid tissue in elasmobranchs. Zool Sci 3: 453–458

    Google Scholar 

  • Voss Jr EW, Sigel MM (1971) Distribution of 19S and 7S IgM antibodies during the immune response in the nurse shark. J Immunol 106: 1323–1329

    PubMed  CAS  Google Scholar 

  • Voss Jr EW, Sigel MM (1972) Valence and temporal change in affinity of purified 7S and 19S nurse shark andti-2,4 dinitrophenyl antibodies. J Immunol 109: 665–673

    PubMed  CAS  Google Scholar 

  • Wilson EO (1993) The diversity of life. WW Norton & Company, New York, London

    Google Scholar 

  • Wilson M, Hsu E, Marcuz A, Courtet M, Du Pasquier L, Steinberg C (1992) What limits affinity maturation in Xenopus - the rate of somatic mutation or the ability to select mutants? EMBO J 11: 4337–4347

    PubMed  CAS  Google Scholar 

  • Zapata AG, Torroba M, Sacedon R, Varas A, Vicente A (1996) Structure of the lymphoid organs of elasmobranchs. J Exp Zool 275: 125–143

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flajnik, M.F., Rumfelt, L.L. (2000). The Immune System of Cartilaginous Fish. In: Du Pasquier, L., Litman, G.W. (eds) Origin and Evolution of the Vertebrate Immune System. Current Topics in Microbiology and Immunology, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59674-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59674-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64078-0

  • Online ISBN: 978-3-642-59674-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics