Skip to main content

Abstract

The most powerful current methods of constructing low-discrepancy point sets for quasi-Monte Carlo applications employ the theory of (t, m, s)-nets. This paper gives a survey of this theory and of the construction methods that are based on it. Some new results are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.J., Shader, B.L.: A construction for (t,m,s)-nets in base q. SIAM J. Discrete Math. 10 (1997) 460 – 468

    Article  MATH  MathSciNet  Google Scholar 

  2. Auer, R.: Ray class fields of global function fields with many rational places. Preprint, 1998

    Google Scholar 

  3. Clayman, A.T., Lawrence, K.M., Mullen, G.L., Niederreiter, H., Sloane, N.J.A.: Updated tables of parameters of (t,m,s)-nets. J. Combinatorial Designs, to appear

    Google Scholar 

  4. Clayman, A.T., Mullen, G.L.: Improved (t,m,s)-net parameters from the Gilbert-Varshamov bound. Applicable Algebra Engrg. Comm. Comp. 8(1997) 491–496

    Article  MATH  MathSciNet  Google Scholar 

  5. Edel, Y., Bierbrauer, J.: Construction of digital nets from BCH-codes. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 221–231, Springer, New York, 1998

    Google Scholar 

  6. Faure, H.: Discrepance de suites associées à un système de numération (en dimension s). Acta Arith. 41 (1982) 337 - 351

    MATH  MathSciNet  Google Scholar 

  7. Hansen, T., Mullen, G.L., Niederreiter, H.: Good parameters for a class of node sets in quasi-Monte Carlo integration. Math. Comp. 61(1993) 225–234

    Article  MATH  MathSciNet  Google Scholar 

  8. Larcher, G., Lauß, A., Niederreiter, H., Schmid, W.Ch.: Optimal polyno-mials for (t,m,s)-nets and numerical integration of multivariate Walsh series. SIAM J. Numer. Analysis 33(1996) 2239–2253

    Article  MATH  Google Scholar 

  9. Larcher, G., Niederreiter, H., Schmid, W.Ch.: Digital nets and sequences constructed over finite rings and their application to quasi-Monte Carlo integration. Monatsh. Math. 121(1996) 231–253

    Article  MATH  MathSciNet  Google Scholar 

  10. Lawrence, K.M.: A combinatorial characterization of (t,m,s)-nets in base b. J. Combinatorial Designs 4(1996) 275–293

    Article  MATH  MathSciNet  Google Scholar 

  11. Lawrence, K.M.: Construction of (t,m,s)-nets and orthogonal arrays from binary codes. Finite Fields Appl., to appear

    Google Scholar 

  12. Lawrence, K.M., Mahalanabis, A., Mullen, G.L., Schmid, W.Ch.: Construction of digital (t,m,s)-nets from linear codes. Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 189–208, Cambridge Univ. Press, Cambridge, 1996

    Google Scholar 

  13. Laywine, C.F., Mullen, G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York, 1998

    MATH  Google Scholar 

  14. Laywine, C.F., Mullen, G.L., Whittle, G.: D-dimensional hypercubes and the Euler and MacNeish conjectures. Monatsh. Math. 119(1995) 223–238

    Article  MATH  MathSciNet  Google Scholar 

  15. Mullen, G.L., Mahalanabis, A., Niederreiter, H.: Tables of (t,m,s)-net and (t,s)-sequence parameters. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lecture Notes in Statistics, Vol. 106, pp. 58–86, Springer, New York, 1995

    Google Scholar 

  16. Mullen, G.L., Schmid, W.Ch.: An equivalence between (t,m,s)-nets and strongly orthogonal hypercubes. J. Combinatorial Theory Ser. A 76(1996) 164–174

    Google Scholar 

  17. Mullen, G.L., Whittle, G.: Point sets with uniformity properties and orthogonal hypercubes. Monatsh. Math. 113(1992) 265–273

    Article  MATH  MathSciNet  Google Scholar 

  18. Niederreiter, H.: Point sets and sequences with small discrepancy. Monatsh. Math. 104(1987) 273–337

    Article  MATH  MathSciNet  Google Scholar 

  19. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1988) 51–70

    Article  MATH  MathSciNet  Google Scholar 

  20. Niederreiter, H.: Low-discrepancy point sets obtained by digital constructions over finite fields. Czechoslovak Math. J. 42(1992) 143–166

    MATH  MathSciNet  Google Scholar 

  21. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, 1992

    Google Scholar 

  22. Niederreiter, H.: Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes. Discrete Math. 106/107(1992) 361–367

    Google Scholar 

  23. Niederreiter, H.: Nets, (t,s)-sequences, and algebraic curves over finite fields with many rational points. Proc. International Congress of Mathematicians (Berlin, 1998), Documenta Math. Extra Volume ICM III (1998) 377–386

    Google Scholar 

  24. Niederreiter, H., Xing, C.P.: Low-discrepancy sequences obtained from algebraic function fields over finite fields. Acta Arith. 72(1995) 281–298

    MATH  MathSciNet  Google Scholar 

  25. Niederreiter, H., Xing, C.P.: Low-discrepancy sequences and global function fields with many rational places. Finite Fields Appl. 2(1996) 241–273

    Article  MATH  MathSciNet  Google Scholar 

  26. Niederreiter, H., Xing, C.P.: Quasirandom points and global function fields. Finite Fields and Applications (S. Cohen and H. Niederreiter, eds.), London Math. Soc. Lecture Note Series, Vol. 233, pp. 269–296, Cambridge Univ. Press, Cambridge, 1996

    Google Scholar 

  27. Niederreiter, H., Xing, C.P.: The algebraic-geometry approach to low-discrepancy sequences. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 139–160, Springer, New York, 1998

    Google Scholar 

  28. Niederreiter, H., Xing, C.P.: Nets, (t,s)-sequences, and algebraic geometry. Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds.), Lecture Notes in Statistics, Vol. 138, pp. 267–302, Springer, New York, 1998

    Google Scholar 

  29. Schmid, W.Ch.: (t,m,s)-nets: digital construction and combinatorial aspects. Dissertation, University of Salzburg, 1995

    Google Scholar 

  30. Schmid, W.Ch.: Shift-nets: a new class of binary digital (t,m,s)-nets. Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter et al., eds.), Lecture Notes in Statistics, Vol. 127, pp. 369–381, Springer, New York, 1998

    Google Scholar 

  31. Schmid, W.Ch.: Improvements and extensions of the “Salzburg Tables” by using irreducible polynomials. This volume

    Google Scholar 

  32. Schmid, W.Ch., Wolf, R.: Bounds for digital nets and sequences. Acta Arith. 78(1997) 377–399

    MATH  MathSciNet  Google Scholar 

  33. Soboi’, I.M.: The distribution of points in a cube and the approximate evaluation of integrals (Russian). Zh. Vychisl. Mat. i Mat. Fiz. 7(1967) 784–802

    Google Scholar 

  34. Tezuka, S.: Polynomial arithmetic analogue of Halton sequences. ACM Trans. Modeling and Computer Simulation 3(1993) 99–107

    Article  MATH  Google Scholar 

  35. Tezuka, S.: Uniform Random Numbers: Theory and Practice. Kluwer Academic Pubi., Boston, 1995

    Book  MATH  Google Scholar 

  36. Tezuka, S., Tokuyama, T.: A note on polynomial arithmetic analogue of Halton sequences. ACM Trans. Modeling and Computer Simulation 4(1994) 279–284

    Article  MATH  Google Scholar 

  37. Xing, C.P., Niederreiter, H.: A construction of low-discrepancy sequences using global function fields. Acta Arith. 73(1995) 87–102

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niederreiter, H. (2000). Constructions of (t, m, s)-Nets. In: Niederreiter, H., Spanier, J. (eds) Monte-Carlo and Quasi-Monte Carlo Methods 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59657-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59657-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66176-4

  • Online ISBN: 978-3-642-59657-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics