Skip to main content

What Affects the Accuracy of Quasi-Monte Carlo Quadrature?

  • Conference paper
Monte-Carlo and Quasi-Monte Carlo Methods 1998

Abstract

Quasi-Monte Carlo quadrature methods have been used for several decades. Their accuracy ranges from excellent to poor, depending on the problem. This article discusses how quasi-Monte Carlo quadrature error can be assessed, and what are the factors that influence it.

This research was partially supported by Hong Kong Research Grants Council grant RGC/97–98/47 and Hong Kong Baptist University grant FRG/96–97/II-67.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68(1950), 337–404.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, U. S. Government Printing Office, Washington, DC, 1964.

    MATH  Google Scholar 

  3. R. E. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1 (1997), 27–46.

    Google Scholar 

  4. R. Cranley and T. N. L. Patterson, Randomization of number theoretic methods for multiple integration, SIAM J. Numer. Anal. 13(1976), 904–914.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Entacher, P. Hellekalek, and P. L’écuyer, Quasi-Monte Carlo node sets from linear congruential generators, In Niederreiter and Spanier [NS99].

    Google Scholar 

  6. K. T. Fang and Y. Wang, Number-theoretic methods in statistics, Chapman and Hall, New York, 1994.

    Book  MATH  Google Scholar 

  7. A. Genz, Numerical computation of multivariate normal probabilities, J. Comput. Graph. Statist. 1(1992), 141–150.

    Google Scholar 

  8. A. Genz, Comparison of methods for the computation of multivariate normal probabilities, Computing Science and Statistics 25(1993), 400–405.

    Google Scholar 

  9. S. Heinrich, Efficient algorithms for computing the L 2 -discrepancy, Math. Comp. 65 (1996), 1621–1633.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. J. Hickernell and H. S. Hong, Computing multivariate normal probabilities using rank-1 lattice sequences, Proceedings of the Workshop on Scientific Computing (Hong Kong) (G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, 1997, pp. 209–215.

    Google Scholar 

  11. F. J. Hickernell and H. S. Hong, The asymptotic efficiency of randomized nets for quadrature, Math. Comp. 68(1999), 767–791.

    Article  MATH  MathSciNet  Google Scholar 

  12. F. J. Hickernell, A comparison of random and quasirandom points for multidimensional quadrature, In Niederreiter and Shiue [NS95], pp. 213–227.

    Google Scholar 

  13. F. J. Hickernell, The mean square discrepancy of randomized nets, ACM Trans. Model. Comput. Simul. 6(1996), 274 - 296.

    Article  MATH  MathSciNet  Google Scholar 

  14. F. J. Hickernell, Quadrature error bounds with applications to lattice rules, SIAM J. Numer. Anal. 33(1996), 1995–2016, corrected printing of Sections 3–6 in ibid., 34(1997), 853–866.

    Article  MathSciNet  Google Scholar 

  15. F. J. Hickernell, A generalized discrepancy and quadrature error bound, Math. Comp. 67(1998), 299–322.

    Article  MATH  MathSciNet  Google Scholar 

  16. F. J. Hickernell, Lattice rules: How well do they measure up?, Random and Quasi-Random Point Sets (P. Hellekalek and G. Larcher, eds.), Lecture Notes in Statistics, vol. 138, Springer-Verlag, New York, 1998, pp. 109–166.

    Google Scholar 

  17. F. J. Hickernell, Goodness-of-fit statistics, discrepancies and robust designs, Statist. Probab. Lett. (1999), to appear.

    Google Scholar 

  18. E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. 54 (1961), 325–333.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. J. Hickernell and H. Woźniakowski, Integration and approximation in arbitrary dimensions, 1998, submitted for publication.

    Google Scholar 

  20. B. D. Keister, Multidimensional quadrature algorithms, Computers in Physics 10(1996), 119–122.

    Article  Google Scholar 

  21. L. Kocis and W. J. Whiten, Computational investigations of low- discrepancy sequences, ACM Trans. Math. Software 23(1997), 266–294.

    Article  MATH  Google Scholar 

  22. G. Larcher, Point sets with minimal L 2 -discrepancy, 1999, preprint.

    Google Scholar 

  23. P. L’Ecuyer, Tables of linear congruential generators of different sizes and good lattice structure, Math. Comp. 68 (1999), 249 - 260.

    Article  MATH  MathSciNet  Google Scholar 

  24. C. Lemieux and P. L’Ecuyer, Efficiency improvement by lattice rules for pricing asian options, Proc. 1998 Winter Simulation Conference, IEEE Press, 1998, pp. 579–586.

    Google Scholar 

  25. C. Lemieux and P. L’Ecuyer, A comparison of Monte Carlo, lattice rules and other low-discrepancy point sets, In Niederreiter and Spanier [NS99].

    Google Scholar 

  26. W. J. Morokoff and R. E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15(1994), 1251–1279.

    Article  MATH  MathSciNet  Google Scholar 

  27. W. J. Morokoff and R. E. Caflisch, Quasi-Monte Carlo integration, J. Comput. Phys. 122(1995), 218–230.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  29. H. Niederreiter and P. J.-S. Shiue (eds.), Monte Carlo and quasi-Monte Carlo methods in scientific computing, Lecture Notes in Statistics, vol. 106, Springer-Verlag, New York, 1995.

    Google Scholar 

  30. H. Niederreiter and J. Spanier (eds.), Monte Carlo and quasi-Monte Carlo methods 1998, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  31. A. B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences, In Niederreiter and Shiue [NS95], pp. 299–317.

    Google Scholar 

  32. A. B. Owen, Monte Carlo variance of scrambled equidistribution quadrature, SIAM J. Numer. Anal. 34 (1997), 1884–1910.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. B. Owen, Scrambled net variance for integrals of smooth functions, Ann. Stat. 25 (1997), 1541–1562.

    Article  MATH  MathSciNet  Google Scholar 

  34. A. B. Owen, Latin supercube sampling for very high dimensional simulations, ACM Trans. Model. Comput. Simul. 8(1998), 71–102.

    Article  MATH  Google Scholar 

  35. A. B. Owen, Monte Carlo, quasi-Monte carlo, and randomized quasi-Monte Carlo, In Niederreiter and Spanier [NS99].

    Google Scholar 

  36. S. Paskov and J. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22(1995), 113–120.

    Article  Google Scholar 

  37. A. Papageorgiou and J. F. Traub, Beating Monte Carlo, Risk 9(1996), no. 6, 63–65.

    Google Scholar 

  38. A. Papageorgiou and J. F. Traub, Faster evaluation of multidimensional integrals, Computers in Physics 11(1997), 574–578.

    Article  Google Scholar 

  39. K. Ritter, Average case analysis of numerical problems, Habilitationsschrift, Universität Erlangen-Nürnberg, Erlangen, Germany, 1996.

    Google Scholar 

  40. K. F. Roth, On irregularities of distribution, Mathematika 1(1954), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Saitoh, Theory of reproducing kernels and its applications, Longman Scientific & Technical, Essex, England, 1988.

    Google Scholar 

  42. I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  43. I. M. Sobol’, Multidimensional quadrature formulas and Haar functions (in Russian), Izdat. “Nauka”, Moscow, 1969.

    Google Scholar 

  44. J. Spanier, Quasi-Monte Carlo methods for particle transport problems, In Niederreiter and Shiue [NS95], pp. 121–148.

    Google Scholar 

  45. I. H. Sloan and H. Woźniakowski, An intractability result for multiple integration, Math. Comp. 66(1997), 1119–1124.

    Article  MATH  MathSciNet  Google Scholar 

  46. G. Wahba, Spline models for observational data, SIAM, Philadelphia, 1990.

    Book  MATH  Google Scholar 

  47. T. T. Warnock, Computational investigations of low discrepancy point sets, Applications of Number Theory to Numerical Analysis (S. K. Zaremba, ed.), Academic Press, New York, 1972, pp. 319–343.

    Google Scholar 

  48. T. T. Warnock, Computational investigations of low discrepancy point sets II, In Niederreiter and Shiue [NS95], pp. 354–361.

    Google Scholar 

  49. H. Woźniakowski, Efficiency of quasi-Monte Carlo algorithms for high dimensions, In Niederreiter and Spanier [NS99].

    Google Scholar 

  50. R. X. Yue and F. J. Hickernell, Robust designs for fitting linear models with misspecification, Statist. Sinica (1999), to appear.

    Google Scholar 

  51. S. K. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21(1968), 85–96.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hickernell, F.J. (2000). What Affects the Accuracy of Quasi-Monte Carlo Quadrature?. In: Niederreiter, H., Spanier, J. (eds) Monte-Carlo and Quasi-Monte Carlo Methods 1998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59657-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59657-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66176-4

  • Online ISBN: 978-3-642-59657-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics