Skip to main content

Responses in the Raphe-Hippocampal Serotonergic System During Peripheral Inflammation: Putative Role in Sickness Behaviour

  • Conference paper
Neuro-Immune Interactions in Neurologic and Psychiatric Disorders

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

It is now well established that challenges to the immune system trigger a number of physiological processes, such as activation of the hypothalamicpituitary- adrenocortical (HPA) axis, fever, and sickness behaviour. The task of these triggered processes is to promote survival and recovery of homeostasis. However, at the level of the brain the neurotransmitter systems underlying these physiological and behavioural responses still need to be fully characterized. By use of an in vivo microdialysis method in rats, we have found that during peripheral inflammation (induced by intraperitoneal (ip) injection of endotoxin (lipopolysaccharide; LPS) marked changes occur in serotonergic neurotransmission in the brain. Hence, a profound increase in extracellular levels of serotonin (5-HT) was observed in the hippocampus after an ip injection of LPS. This endotoxin effect was mainly mediated by interleukin- 1 (IL-1). Based on several studies, it was postulated that the rise in hippocampal 5-HT levels might be associated with the development of sickness behaviour. Moreover, a peripheral inflammatory challenge was shown to evoke a long-term increase in 5-HTIA receptor density in hippocampal subregions but not in the raphe area.

Disturbances in the functioning of the immune System described in major depression prompted us to study whether disturbed interactions between the central nervous System and the immune System may be implicated in the development of stress-related disorders such as major depression. The Observation that depressed patients show an elevated central drive of corticotropin-releasing hormone (CRH) in conjunction with the fact that this neuropeptide is highly involved in physiological responses to stress lead us to develop an animal model of CRH hyperactivity, i.e., the long-term, intracerebroventricularly (icv) CRH-infused rat. In our experimental design, rats were challenged ip with LPS after seven days of icv CRH or vehicle infusion. The endotoxin evoked a profound fever response in control animals, whereas only a blunted response developed in long-term CRH-treated rats. Moreover, LPS produced an attenuated hippocampal 5-HT response and a delayed onset of HPA axis activation and behavioural inhibition in CRH-treated rats. These attenuated, brain-mediated responses could not have been caused by suppression of the release of plasma cytokines, since CRH-infused animals showed enhanced LPS-induced plasma bioactivities of IL-1 and IL-6 (but not of tumor necrosis factor (TNF)).

These studies indicate that peripheral inflammation elicits vast changes in hippocampal serotonergic neurotransmission, both in terms of Serotonin release and 5-HT1A receptor density, that might be responsible for the initiation of specific physiological, behavioural and molecular responses in order to cope with the challenge. In addition, chronically elevated CRH drive in the brain, as seen during chronic stress and stress-related disorders results in aberrant brain-mediated responses to an acute inflammatory challenge - a Situation which, in the long run, may present a detrimental threat for health. Thus, these results provide evidence that chronic CRH hypersecretion is an important factor in the etiology of stress-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SM, Kant GJ, DeSouza EB (1993) Effects of chronic stress on anterior pituitary and brain corticotropin-releasing factor receptors. Pharmacol Biochem Behav 44:755–761

    Article  PubMed  CAS  Google Scholar 

  • Auerbach SB, Minzenberg MJ, Wilkinson LO (1989) Extracellular Serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 499:281–290

    Article  PubMed  CAS  Google Scholar 

  • Brady LS, Lynn AB, Nerkenham M, Gottesfeld Z (1994) Systemic interleukin-1 induces early and late patterns of c-fos mRNA expression in brain. J Neurosci 14:4951

    PubMed  CAS  Google Scholar 

  • Connor TJ, Song C, Leonard BE, Merali Z, Anisman H (1998) An assessement of the effects of central interleukin-1-beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84:923–933

    Article  PubMed  CAS  Google Scholar 

  • Crespi F, Garratt JC, Sleight AJ, Marsden CA (1990) In vivo evidence that 5-hydroxytryptamine (5-HT) neuronal firing and release are not necessarily correlated with 5-HT metabolism. Neuroscience 35:139–144

    Article  PubMed  CAS  Google Scholar 

  • Dantzer R, Bluthe RM, Kent S, Kelley KW (1991) Behavioural effects of cytokines. In: Rothwell N, Dantzer R (eds) Interleukin-1 in the brain. Pergamon Press, Oxford, pp 135–150

    Google Scholar 

  • DeSouza EB, Insel TR, Perrin MH, Rivier J, Vale WW, Kuhar MJ (1985) Differential regulation of corticotropin-releasing factor receptors in anterior and intermediate lobes of pituitary and in brain following adrenalectomy in rats. Neurosci Lett 56:121–128

    Article  PubMed  Google Scholar 

  • DeSouza EB, Whitehouse PJ, Kuhar MJ, Price DL, Vale WW (1986) Reciprocal changes in corticotropin- releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature 319:593–595

    Article  PubMed  Google Scholar 

  • Dijkstra I, Tilders FJH, Aguilera G, Kiss A, Rabadan-Diehl C, Barden N, Karanth S, Holsboer F, Reul JMHM (1998) Reduced activity of hypothalamic corticotropin-releasing hormone neurons in transgenic mice with impaired glucocorticoid receptor function. J Neurosci 18:3909–3918

    PubMed  CAS  Google Scholar 

  • Dinarello CA (1991) Interleukin-1 and interleukin-1 antagonism. Blood 77:1627–1652

    PubMed  CAS  Google Scholar 

  • Dunn AJ (1992) Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Ther 261:964–969

    PubMed  CAS  Google Scholar 

  • Dunn AJ, Welch J (1991) Stress- and endotoxin-induced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. J Neurochem 57:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Elmquist JK, Ackermann MR, Register KB, Rimler RB, Ross LR, Jacobson CD (1993) Induction of fos-like immunoreactivity in the rat brain following pasteurella-multocida endotoxin administration. Endocrinology 133:3054–3057

    Article  PubMed  CAS  Google Scholar 

  • Ericsson A, Kovacs KJ, Sawchenko PE (1994) A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 14:897–913

    PubMed  CAS  Google Scholar 

  • Gottschall PE, Komaki G, Arimura A (1992) Interleukin- 1β activation of the central nervous system. In: Rothwell N, Dantzer R (eds) Interleukin-1 in the brain. Pergamon Press, Oxford, pp 27–49

    Google Scholar 

  • Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12:123–137

    Article  PubMed  CAS  Google Scholar 

  • Hauger RL, Millan MA, Lorang M, Harwood JP, Aguilera G (1988) Corticotropin-releasing factor receptors and pituitary adrenal responses during immobilization stress. Endocrinology 123: 396–405

    Article  PubMed  CAS  Google Scholar 

  • Holsboer F, Barden N (1996) Antidepressants and hypothalamic pituitary adrenocortical regulation. Endocrinol Rev 7:187–205

    Google Scholar 

  • Irwin MR, Vale W, Britton KT (1987) Central corticotropin-releasing factor suppresses natural killer cytotoxicity. Brain Behav Immun 1:81–87

    Article  PubMed  CAS  Google Scholar 

  • Irwin M, Lacher U, Caldwell C (1992) Depression and reduced natural killer cytotoxicity: a longitudinal study of depressed patients and control subjects. Psychol Med 22:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229

    PubMed  CAS  Google Scholar 

  • Janssen RAJ, Mulder NH, The TH, Deleij L (1994) The immunobiological effects of interleukin-2 in vivo. Cancer Immunol Immunother 39:207–216

    Article  PubMed  CAS  Google Scholar 

  • Kabiersch A, DelRey A, Honegger CG, Besedovsky HO (1988) Interleukin-1 induces changes in norepinephrine metabolism in the rat brain. Brain Behav Immun 2:267–274

    Article  PubMed  CAS  Google Scholar 

  • Kalén P, Strecker RE, Rosengren E, Björklund A (1988) Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem 51:1422–1435

    Article  PubMed  Google Scholar 

  • Kalén P, Rosegren E, Lindvall O, Björklund A (1989) Hippocampal noradrenaline and serotonin release over 24 hours as measured by the dialysis technique in freely moving rats: correlation to behavioural activity state, effect of handling and tail-pinch. Eur J Neurosci 1:181–188

    Article  PubMed  Google Scholar 

  • Karanth S, Lyson K, McCann SM (1993) Role of nitric oxide in interleukin 2-induced corticotropin- releasing factor release from incubated hypothalami. Proc Natl Acad Sci USA 90:3383–3387

    Article  PubMed  CAS  Google Scholar 

  • Katsuura G, Gottschall PE, Dahl RR, Arimura A (1988) Adrenocorticotropin release induced by intracerebroventricular injection of recombinant human interleukin-1 in rats: possible involvement of prostaglandin. Endocrinology 122:1773–1779

    Article  PubMed  CAS  Google Scholar 

  • Katsuura G, Gottschall PE, Dahl RR, Arimura A (1989) Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 124:3125–3127

    Article  PubMed  CAS  Google Scholar 

  • Kluger MJ (1991) Fever: role of pyrogens and cryogens. Physiol Rev 71:93–127

    PubMed  CAS  Google Scholar 

  • Komaki G, Arimura A, Koves K (1992) Effect of intravenous injection of IL-1 beta on PGE2 levels in several brain areas as determined by microdialysis. Am J Physiol 262:E246–E251

    PubMed  CAS  Google Scholar 

  • Labeur MS, Arzt E, Wiegers GJ, Holsboer F, Reul JMHM (1995) Long-term intracerebroventricular corticotropin-releasing hormone administration induces distinct changes in rat splenocyte activation and cytokine expression. Endocrinology 136:2678–2688

    Article  PubMed  CAS  Google Scholar 

  • Lavicky J, Dunn AJ (1995) Endotoxin administration stimulates cerebral catecholamine release in freely moving rats as assessed by microdialysis. J Neurosci Res 40:407–413

    Article  PubMed  CAS  Google Scholar 

  • Linthorst ACE, Flachskamm C, Holsboer F, Reul JMHM (1994) Local administration of recombinant human interleukin-1 beta in the rat hippocampus increases serotonergic neurotransmission, hypothalamic-pituitary-adrenocortical axis activity, and body temperature. Endocrinology 135:520–532

    Article  PubMed  CAS  Google Scholar 

  • Linthorst ACE, Flachskamm C, Holsboer F, Reul JMHM (1995a) Intraperitoneal administration of bacterial endotoxin enhances noradrenergic neurotransmission in the rat preoptic area: relationship with body temperature and hypothalamic-pituitary-adrenocortical axis activity. Eur J Neurosci 7:2418–2430

    Article  PubMed  CAS  Google Scholar 

  • Linthorst ACE, Flachskamm C, Müller-Preuss P, Holsboer F, Reul JMHM (1995b) Effect of bacterial endotoxin and interleukin-1 beta on hippocampal serotonergic neurotransmission, behavioral activity, and free corticosterone levels: an in vivo microdialysis study. J Neurosci 15:2920– 2934

    PubMed  CAS  Google Scholar 

  • Linthorst ACE, Flachskamm C, Holsboer F, Reul JMHM (1996) Activation of serotonergic and noradrenergic neurotransmission in the rat hippocampus after peripheral administration of bacterial endotoxin: involvement of the cyclo-oxygenase pathway. Neurosci 72:989–997

    Article  CAS  Google Scholar 

  • Linthorst ACE, Flachskamm C, Hopkins SJ, Hoadley ME, Labeur MS, Holsboer F, Reul JMHM (1997) Long-term intracerebroventricular infusion of corticotropin-releasing hormone alters neuroendocrine, neurochemical, autonomic, behavioral, and cytokine responses to a systemic inflammatory challenge. J Neurosci 17:4448–4460

    PubMed  CAS  Google Scholar 

  • Luo X, Kiss A, Rabadandiehl C, Aguilera G (1995) Regulation of hypothalamic and pituitary corticotropin- releasing hormone receptor messenger ribonucleic acid by adrenalectomy and glucocorticoids. Endocrinology 136:3877–3883

    Article  PubMed  CAS  Google Scholar 

  • Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiat 19:11–38

    Article  CAS  Google Scholar 

  • Makino S, Schulkin J, Smith MA, Pacak K, Palkovits M, Gold PW (1995) Regulation of corticotropin- releasing hormone receptor messenger ribonucleic acid in the rat brain and pituitary by glucocorticoids and stress. Endocrinology 136:4517–4525

    Article  PubMed  CAS  Google Scholar 

  • Merali Z, Lacosta S, Anisman H (1997) Effects of interleukin-1-beta and mild stress on alterations of norepinephrine, dopamine and serotonin neurotransmission - a regional microdialysis study. Brain Res 761:225–235

    Article  PubMed  CAS  Google Scholar 

  • Molina-Holgado F, Guaza C (1996) Endotoxin administration induced differential neurochemical activation of the rat brain stem nuclei. Brain Res Bull 40:151–156

    Article  PubMed  CAS  Google Scholar 

  • Munck A, Guy re PM (1991) Glucocorticoids and immune function. In: Ader R, Felten DS, Cohen N (eds) Psychoneuroimmunology. Academic Press, San Diego, pp 447–474

    Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrinol Rev 5:25–44

    Article  CAS  Google Scholar 

  • Nagayama H, Lu JQ (1997) Circadian rhythm in the response to intracerebroventricular administration of 8-OH-DPAT. Brain Res 756:92–95

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, Kilts CD, Loosen PT, Vale W (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226:1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43:425–473

    PubMed  CAS  Google Scholar 

  • Owens MJ, Nemeroff CB (1993) The role of corticotropin-releasing factor in the pathophysiology of affective and anxiety disorders: laboratory and clinical studies. In: Chadwick DJ, Marsh J, Ackrill K (eds.) Corticotropin releasing factor. Ciba Foundation Symposium 172. John Wiley, Chichester, pp 296–308

    Google Scholar 

  • Pauli S, Linthorst ACE, Reul JMHM (1998) Tumour necrosis factor-alpha and interleukin-2 differentially affect hippocampal serotonergic neurotransmission, behavioural activity, body temperature and hypothalamic-pituitary-adrenocortical axis activity in the rat. Eur J Neurosci 10:868–878

    Article  PubMed  CAS  Google Scholar 

  • Pomara N, Singh RR, Deptula D, LeWitt PA, Bissette G, Stanley M, Nemeroff CB (1989) CSF corticotropin- releasing factor (CRF) in Alzheimer’s disease: its relationship to severity of dementia and monoamine metabolites. Biol Psychiat 26:500–504

    Article  PubMed  CAS  Google Scholar 

  • Raadsheer FC, Hoogendijk WJG, Stam FC, Tilders FJH, Swaab DF (1994) Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60:436–444

    Article  PubMed  CAS  Google Scholar 

  • Raadsheer FC, VanHeerikhuize JJ, Lucassen PJ, Hoogendijk WJG, Tilders FJH, Swaab DF (1995) Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. Am J Psychiat 152:1372–1376

    PubMed  CAS  Google Scholar 

  • Raber J, Bloom FE (1994) IL-2 induces vasopressin release from the hypothalamus and the amygdala: Role of nitric oxide-mediated signaling. J Neurosci 14:6187–6195

    PubMed  CAS  Google Scholar 

  • Reul JMHM, Linthorst ACE (1997) Central administration of corticotropin-releasing hormone profoundly stimulates rat hippocampal serotonergic neurotransmission and behavioral activity: no effect of adrenalectomy Society Neurosci 56.7.

    Google Scholar 

  • Reul JMHM, Labeur MS, Wiegers GJ, Linthorst ACE (1998) Altered neuroimmunoendocrine communication during a condition of chronically increased brain corticotropin-releasing hormone drive. Ann NY Acad Sci 840:444–455

    Article  PubMed  CAS  Google Scholar 

  • Rivier C, Rivest S (1993) Mechanisms mediating the effects of cytokines on neuroendocrine functions in the rat. In: Chadwick DJ, Marsh K, Ackrill J (eds) Corticotropin-releasing factor. Ciba Foundation Symposium 172. John Wiley, Chichester, pp 204–225

    Google Scholar 

  • Rivier C, Shen GH (1994) In the rat, endogenous nitric oxide modulates the response of the hypothalamic- pituitary-adrenal axis to interleukin-1 beta, vasopressin, and oxytocin. J Neurosci 14:1985–1993

    PubMed  CAS  Google Scholar 

  • Rothwell NJ (1991) Functions and mechanisms of interleukin 1 in the brain. Trends Pharmacol Sci 12:430–436

    Article  PubMed  CAS  Google Scholar 

  • Rueter LE, Jacobs BL (1996) A microdialysis examination of serotonin release in the rat forebrain induced by behavioral environmental manipulations. Brain Res 739:57–69

    Article  PubMed  CAS  Google Scholar 

  • Sagar SM, Price KJ, Kasting NW, Sharp FR (1995) Anatomic patterns of FOS immunostaining in rat brain following systemic endotoxin administration. Brain Res Bull 36:381–392

    Article  PubMed  CAS  Google Scholar 

  • Sirko S, Bishai I, Coceani F (1989) Prostaglandin formation in the hypothalamus in vivo: effect of pyrogens. Am J Physiol 256:R616–624

    PubMed  CAS  Google Scholar 

  • Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, Wiktorowicz K (1996) Indicators of immune activation in major depression. Psychiat Res 64:161–167

    Article  CAS  Google Scholar 

  • Smith T, Hewson AK, Quarrie L, Leonard JP, Cuzner ML (1994) Hypothalamic PGE(2) and cAMP production and adrenocortical activation following intraperitoneal endotoxin injection - in vivo microdialysis studies in Lewis and Fischer rats. Neuroendocrinology 59:396–405

    Article  PubMed  CAS  Google Scholar 

  • Tizabi Y, Aguilera G (1992) Desensitization of the hypothalamic-pituitary-adrenal axis following prolonged administration of corticotropin-releasing hormone or vasopressin. Neuroendocrinology 56:611–618

    Article  PubMed  CAS  Google Scholar 

  • Vale W, Vaughan J, Perrin M (1997) Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinologist 7:S3–S9

    Article  Google Scholar 

  • Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DM (1993) Differential indijction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32:581–587

    Article  PubMed  CAS  Google Scholar 

  • Wiegers GJ, Reul JMHM (1998) Induction of cytokine receptors by glucocorticoids: functional and pathological significance. Trends Pharmacol Sci 19:317–321

    Article  PubMed  CAS  Google Scholar 

  • Wiegers GJ, Labeur MS, Stec IEM, Klinkert WEF, Holsboer F, Reul JMHM (1995) Glucocorticoids accelerate anti-Tcell receptor-induced Tcell growth. J Immunol 155:1893–1902

    PubMed  CAS  Google Scholar 

  • Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, Anisman H, Greenberg AH (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643:40–49

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reul, J.M.H.M., Linthorst, A.C.E. (2000). Responses in the Raphe-Hippocampal Serotonergic System During Peripheral Inflammation: Putative Role in Sickness Behaviour. In: Patterson, P., Kordon, C., Christen, Y. (eds) Neuro-Immune Interactions in Neurologic and Psychiatric Disorders. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59643-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59643-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64065-0

  • Online ISBN: 978-3-642-59643-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics