Skip to main content

Neurobiologie affektiver Störungen

  • Chapter
Book cover Psychiatrie der Gegenwart 5
  • 120 Accesses

Zusammenfassung

Erste Entwicklungen zu biologischen Erklärungsansätzen von Affekt und affektiven Störungen ergaben sich zunächst durch rein zufällige Beobachtungen im Bereich der inneren Medizin. Gleich 2 Beobachtungen resultierten in der ursprünglichen Aufstellung der Katecholaminhypothese bei affektiven Störungen. Die erste dieser Beobachtungen konnte in Zusammenhang mit der Einführung von Iproniazid bei der Behandlung der Tuberkulose gemacht werden. Da an Tuberkulose erkrankte Patienten zum damaligen Zeitpunkt noch in großen Sanatorien untergebracht wurden, erfolgten die initialen Anwendungsversuche von Iproniazid auch unter diesen großen klinischen Rahmenbedingungen. Man stellte sehr bald fest, daß Patienten, die mit dieser neuen Substanz behandelt wurden, eine gehobene Stimmung mit Libidozunahme zeigten und essentiell das Bild eines hypomanen Gemütszustandes aufwiesen. Aufgrund dieser Beobachtungen konnte sehr bald aufgezeigt werden, daß es sich bei Iproniazid um einen Monoaminoxydasehemmer (MAOH) handelt, der somit erwartungsgemäß zu einer Anhebung der Aminspiegel führt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aldenhoff JB, Dumais-Huber C, Fritzsche M, Sulger J, Vollmayr B (1997) Altered Ca2+ homeostasis in single T-lymphocytes of depressed patients. J Psychiatr Res 31 /3: 315–322

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam JD, Maislin G, Winokur A, Berwish N, Kling M, Gold P (1988) The oCRH stimulation test before and after clinical recovery from depression. J Affect Disord 14 (3): 213–222

    Article  PubMed  CAS  Google Scholar 

  • Arango V, Underwood, MD, Mann JJ (1992) Alterations in monoamine receptors in the brain of suicide victims. J Clin Psychopharmacol 12: 8–12

    Article  Google Scholar 

  • Asberg M et al. (1976) 5-HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Arch Gen Psychiatry 33/10:1193–1197

    Google Scholar 

  • Avissar S, Nechamkin Y, Roitman G, Schreiber G (1997) Reduced G protein functions and immune-reactive levels in mononuclear leukocytes of patients with depression. Am J Psychiatry 154 /2: 211–217

    PubMed  CAS  Google Scholar 

  • Barden N, Daigle M, Picard V, Di Paolo T (1983) Perturbation of rat brain serotonergic systems results in an inverse relation between substance P and serotonin concentrations measured in discrete nuclei. J Neurochem 41 (3): 834–840

    Article  PubMed  CAS  Google Scholar 

  • Berger M, Riemann D, Hochli D, Spiegel R (1989) The cholinergic rapid eye movement sleep induction test with RS-86. Arch Gen Psychiatry 46: 421–428

    PubMed  CAS  Google Scholar 

  • Carroll GJ (1982) The dexamethasone suppression test for melancholia. Br J Psychiatry 140: 292–304

    Article  PubMed  CAS  Google Scholar 

  • Delgado PL, Miller HL, Salomon RM et al. (1993) Monoamines and the mechanism of antidepressant action: effects of catecholamine depletion on mood of patients treated with antidepressants. Psychopharmacol Bull 29: 389–396

    PubMed  CAS  Google Scholar 

  • Faustman WO, King RJ, Faull KF, Moses JA Jr, Benson KL, Zarcone VP, Csernansky JG (1991) MMPI measures of impulsivity and depression correlate with CSF 5-HIAA and HVA in depression but not schizophrenia. J Affect Disord 22: 235–239

    Article  PubMed  CAS  Google Scholar 

  • Fawcett J, Siomopoulos V (1971) Dextroamphetamine response as a possible predictor of improvement with tricyclic therapy in depression. Arch Gen Psychiatry 25: 247–255

    Google Scholar 

  • Garcia-Sevilla JA, Guimon J, Garcia-Vallejo P et al. (1986) Biochemical and functional evidence of supersensitive platelet α2-adrenoreceptors in major affective disorder: effect of long-term lithium carbonate treatment. Arch Gen Psychiatry 43: 51–57

    PubMed  CAS  Google Scholar 

  • Georgotas A, Schwertzer J, McCue RE et al. (1987) Clinical and treatment effects on 3-H-clonodine and 3-H-imipramine binding in elderly depressed patients. Life Sci 40: 2137–2143

    Article  PubMed  CAS  Google Scholar 

  • Gross-Iseroff R, Dillon KA, Israeli M, Biegon A (1990) Regionally selective increases in μopiate receptor density in the brains of suicide victims. Brain Res 530: 312–316

    Article  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS, Price LH, Aghajanian GK (1992) Tryptophan-deficient diet and amino acid drink deplete plasma tryptophan and induce a relapse of depression in susceptible patients. J Chem Neuroanat 5: 347–348

    Article  PubMed  CAS  Google Scholar 

  • Henn FA, Edwards E, Muneyyirci J (1993) Animal models of depression. Clin Neurosci 1: 152–156

    Google Scholar 

  • Janowsky DS, Overstreet DH (1995) The role of acetylcholine mechanisms in mood disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven, New York

    Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2: 632–635

    Article  PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1973) Parasympathetic suppression of manic symptoms by physostigmine. Arch Gen Psychiatry 28: 542–547

    PubMed  CAS  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM (1974) Acetylcholine and depression. Psychosom Med 36: 248–257

    PubMed  CAS  Google Scholar 

  • Jenkins SW, Robinson DS, Fabre LF, Amdang JJ, Messina ME, Reich LA (1990) Gepirone in treatment of major depression. J Clinical Psychopharm 10/3(Suppl): 775–855

    Google Scholar 

  • Korte M, Griesbeck O, Gravel C, Carroll P, Staiger V, Thoenen H, Bonhoeffer T (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci USA 93/ 22: 12547–12552

    Article  Google Scholar 

  • Kramer MS, Gutler N, Feighner J et al. (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281: 1640–1645

    Article  PubMed  CAS  Google Scholar 

  • Lerer B (1987) Neurochemical and other neurobiological consequences of ECT: implications for the pathogenesis and treatment of affective disorders. In: Meitzer HY (ed) Psychopharmacology: the third generation of progress. Raven, New York, pp 577–588

    Google Scholar 

  • Lisoprawski G, Blanc J, Glowinski J (1981) Activation by stress of the habenulo-interpedunclar substance P neurons in rat. Neurosci Lett 25: 47–51

    Article  PubMed  CAS  Google Scholar 

  • Little KY (1988) Amphetamine, but not methylphenidate, predicts antidepressant response. J Clin Psychopharmacol 8: 177–183

    Article  PubMed  CAS  Google Scholar 

  • Maes M, De Ruyter M, Suy E (1987) The renal excretion of xanthurenic acid following L-tryptophan loading in depressed patients. Hum Psychopharmacol 2: 231–235

    Article  Google Scholar 

  • Maes M, Jacobs M-P, Suy E, Minner B, Leclercq C, Christiaens F, Raus J (1990) Suppressant effects of dexamethasone on the availability of plasma L-tryptophan and tyrosine in healthy controls and in depressed patients. Acta Psychiatr Scand 81: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Mamounas LA, Blue ME, Siuciak JA, Altar CA (1995) BDNF promotes the survival and sprouting of serotonergic axons in the rat brain. J Neurosci 15: 7929–7939

    PubMed  CAS  Google Scholar 

  • Mann JJ, Stanley M, McBride PA et al. (1986) Increased serotonin2 and ß-adrenergic receptor binding in the frontal cortices of suicide victims. Arch Gen Psychiatry 43: 954–969

    PubMed  CAS  Google Scholar 

  • Meitzer HY, Arora RC (1991) Platelet serotonin studies in affective disorders: evidence for a serotonergic abnormality. In: Sandler M, Coppen A, Harnett S (eds) 5-Hy- droxytryptamine in psychiatry: a spectrum of ideas. Oxford Univ Press, New York, pp 50–89

    Google Scholar 

  • Mikuni M, Kagaya A, Takahashi, K, Meitzer HY (1992) Serotonin but not norepinephrine-induced calcium mobilization of platelets is enhanced in affective disorders. Psychopharmacology 106: 311–314

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Widerlov E, Bissette G et al. (1984) Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science 226: 1342–1344

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M (1988) Reduced corticotropin-releasing factor (CRF) binding sites in the frontal cortex of suicides. Arch Gen Psychiatry 45: 577–579

    PubMed  CAS  Google Scholar 

  • Nemeroff CB, Bissette G, Akil H, Fink M (1991) Neuropeptide concentrations in the cerebrospinal fluid of depressed patients treated with electroconvulsive therapy: corticotropin-releasing factor, ß-endorphin and somatostatin. Br J Psychiatry 158: 59–63

    Article  PubMed  CAS  Google Scholar 

  • Nemeroff CB, Krishnan KRR, Reed D, Leder R, Beam C, Dunnick R (1992) Adrenal gland enlargement in major depression. Arch Gen Psychiatry 49: 384–387

    PubMed  CAS  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BCMF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 157539–7547

    Google Scholar 

  • Overstreet DH (1993) The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17: 51–68

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Janicak PG, Javaid JI et al. (1989) Increased 33-H-clonidine bindings in the platelets of patients with depressive and schizophrenic disorders. Psychiatry Res 28: 73–88

    Article  PubMed  CAS  Google Scholar 

  • Sachar EJ (1967) Corticosteroids in depressive illness. II. A longitudinal psychoendocrine study. Arch Gen Psychiatry 17 /5: 554–567

    PubMed  CAS  Google Scholar 

  • Sachar EJ, Hellman L, Fukushima DK, Gallagher TF (1970) Cortisol production in depressive illness. A clinical and biochemical clarification. Arch Gen Psychiatry 23/ 4: 289–298

    Google Scholar 

  • Schatzberg AF, Samson JA, Bloomingdale KL, Schildkraut JJ (1989) Toward a biochemical classification of depressive disorders. X. Urinary catecholamines, their metabolites, and D-type scores in subgroups of depressive disorders. Arch Gen Psychiatry 46: 260–268

    PubMed  CAS  Google Scholar 

  • Schreiber G, Avissar S, Danon A, Belmaker RH (1990) Hyperfunctional G proteins in mononuclear leukocytes of patients with mania. Biol Psychiatry 29: 273–280

    Article  Google Scholar 

  • Siuciak JA, Lewis D, Wiegand SJ, Lindsay RM (1996) Antidepressant-like effect of brain-derived neurotrophic factor. Pharmacol Biochem Behav 56: 131–137

    Article  Google Scholar 

  • Sklair-Tavron L, Nestler EJ (1995) Opposing effects of morphine and the neurotrophins NT-3, NT-4, and BDNF, on locus coeruleus neurons in vitro. Brain Res 702: 117–125

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress alters the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15: 1768–1777

    PubMed  CAS  Google Scholar 

  • Stokes PE, Pick GR, Stoll PM, Nunn WD (1975) Pituitary-adrenal function in depressed patients: resistance to dexamethasone suppression. J Psychiatr Res 12: 271–281

    Article  Google Scholar 

  • Stokes PE, Maas JW, Davis JM et al. (1987) Biogenic amine and metabolic levels in depressed patients with high versus normal hypothalamic-pituitary-adrenocortical activity. Am J Psychiatry 144 /7: 868–872

    PubMed  CAS  Google Scholar 

  • Sulser F, Vetulani J, Mobley PL (1978) Mode of action of antidepressant drugs. Biochem Pharmacol 27: 257–271.

    Article  PubMed  CAS  Google Scholar 

  • Virkkunen M, Nuutila A, Goodwin FK, Linnoila M (1987) Cerebrospinal fluid monoamine metabolite levels in male arsonists. Arch Gen Psychiatry 44 /3: 241–247

    PubMed  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. Brain Res Rev 6: 211–246

    Article  CAS  Google Scholar 

  • Willner P, Muscat R, Papp M (1992) Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 16: 525–534

    Article  PubMed  CAS  Google Scholar 

  • Wolfe N, Katz DI, Albert ML et al. (1990) Neuropsychological profile linked to low dopamine: in Alzheimer’s disease, major depression, and Parkinson’s disease. J Neurol Neurosurg Psychiatry 53: 915–917

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Henn, F. (2000). Neurobiologie affektiver Störungen. In: Helmchen, H., Lauter, H., Henn, F., Sartorius, N. (eds) Psychiatrie der Gegenwart 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59626-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59626-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64057-5

  • Online ISBN: 978-3-642-59626-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics