Advertisement

Development of joint sets in the vicinity of faults

Chapter

Abstract

Unlike regional joint patterns, fault-related joints can often be related to stress perturbations. Their patterns, which have seldom been described, are sometimes complex and difficult to decipher. The examples presented here are mainly joints associated with meter to decameter scale pre-existing faults in limestone. The joints mostly tend to be parallel or perpendicular to the faults with the occurrence of sets of diverging joints localized along the faults. The patterns presented are interpreted in the light of photoelastic models which enable the prediction of stress deviations linked to subtle morphological details on faults. These models show that many of the observed features can be interpreted as stress deviations linked to alternation of closed and open segments along the faults. Joints appear as excellent markers of the deviation of the major horizontal principal paleostress trajectories. A mechanical discussion based on the paradox of the absence of concentration of joints in zones of tensile stress concentration leads to the idea that joint propagation is assisted by contraction within the layers.

Keywords

Stress Deviation Stress Perturbation Stress Trajectory Joint Pattern Tensile Stress Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auzias V.(1995) Contribution à la caractérisation tectonique des réservoirs fractures.Thèse de Doctorat, Université Montpellier II, 325p.Google Scholar
  2. Auzias V., Rives. T. and Petit, J.P. (1993) Signification des côtes (rib marks) dans la cinétique de propagation des diaclases: modèle analogique dans le polyméthacrylate de méthyle (PMMA). C.R. Acad. Sci. Paris, t. 317, Série II, p. 705–712 Google Scholar
  3. Dyer R. (1988) Using joint interactions to estimate paleostress ratios. J. Struct. Geol, 10, 685–699.CrossRefGoogle Scholar
  4. Granier T. (1985) Origin, damping and pattern of development of faults in granite.Tectonics, 4, No 7, 721–737.CrossRefGoogle Scholar
  5. Hetényi, M. (1950) Handbook of experimental stress analysis. Wiley & Sons Inc., 1077p.Google Scholar
  6. Hyett A.J., Hudson J.A. (1990) A photoelastic investigation of the stress state close to rock joints, Rock Joints, Barton, Stephansson (eds), ISBN 90 6191 109 5.Google Scholar
  7. Jaeger J.C. and Cook N.G.W. (1979) Fundamentals of rock mechanics, 3rd edition, Chapman and Hall, London.Google Scholar
  8. Mattauer, M. (1978) Les déformations des matériaux de l’écorce terrestre. Hermann édit. Paris.Google Scholar
  9. Mouginot R. and Maugis D. (1985) Fracture Indentation beneath flat and spherical punches. Journal of Materials Sci., 20, 4354–4376.CrossRefGoogle Scholar
  10. Petit J.P. and Mattauer M. (1995) Paleostress superimposition deduced from mesoscale structures in limestone: the Matelles exposure, Languedoc, France. J. Struct. Geol., Vol. 17, No 2, 245–256.CrossRefGoogle Scholar
  11. Pollard D. D. and Aydin A. (1988) Progress in understanding jointing over the past century. Geol. Soc. of Amer. Bull. 100, p. 1181–1204.CrossRefGoogle Scholar
  12. Pollard, D.D., Segall, P. (1987) Theoretical displacements and stress near fractures in rocks: with applications to faults, joints, veins, dikes, and solution surfaces. In: Fracture Mechanics of Rock (edited by Atkinson B.K. Academic Press, London.277–349.Google Scholar
  13. Price N.J. (1966) Fault and Joint Development in brittle and semi-brittle rocks. New York. Pergamon Press, 176 p.Google Scholar
  14. Rawnsley K.D., Rives T., Petit J.P., Heneher S.R and Lumdsen A.C. (1992) Joint development in perturbed stress fields near faults, J. Struct. Geol., 14, 8/9: 939–951.CrossRefGoogle Scholar
  15. Rispoli R. (1981) Stress field about strike-slip faults inferred from stylolites and extension fractures. Tectonophysics, 75, T29–T36.CrossRefGoogle Scholar
  16. Rives T. (1992) Mécanismes de formation des diaclases dans les roches sédimentaires. Thèse de doctorat., U.S.T.L., Montpellier, 250 p.Google Scholar
  17. Rives, T., Petit, J.P. (1990a) Experimental study of jointing during cylindrical & non cylindrical folding. Proc. Intern. Conf. Mechanics of Jointed & Faulted Rock, Rossmanith (ed.): 205–211. Belkema, Rotterdam.Google Scholar
  18. Rives T., Petit J.P. (1990b) Diaclases et plissements: une approche expériment ale. CR. Acad. Sci. Paris, t. 310, Série II, 1115–1121.Google Scholar
  19. Tricart P., Blondel T., Bouaziz S. (1986) Quelques exemples de diaclases précoces en domaine de plate-forme (Tunisie). Leur utilité pour dépister une extension synsédimentaire ou une inversion structurale. C.R. Acad. Sci. Paris, t. 303, Série II, 10, 975–980.Google Scholar
  20. Vishay-micromesures (1984) Encyclopédie d’analyse des contraintes, Micromesures, 533 p.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  1. 1.Laboratoire de Géophysique et TectoniqueUniversité Montpellier IIFrance
  2. 2.Total, Paris la DéfenseFrance
  3. 3.Elf Aquitaine ProductionPauFrance

Personalised recommendations