Structural evolution within an extruding block: model and application to the Alpine-Pannonian system



Continental escape or lateral extrusion often results from late-stage contraction within continental collision zones when convergence is partitioned into orthogonal contraction, crustal thickening, surface uplift, and sideward motion of fault-bounded blocks. Geometrical arguments suggest that each individual fault-bounded block suffers a specific sequence of deformation. The style of deformation also depends on the location within the block. This includes: (1) initial shortening at the continental couple (future zone of maximum shortening: ZMS); (2) formation of a conjugate shear fracture system and initiation of orogen-parallel displacement of the decoupled extruding block away from the ZMS; (3) because of the changing width of the escaping block away from the ZMS the style of internal deformation changes within the extruding block: (i) shortening (thrusting, folding), surface uplift at the ZMS; (ii) strike-slip faulting along confining wrench corridors and formation of pull-apart basins at oversteps of en echelon shear fractures; (iii) extension parallel and perpendicular to the displacement vector far away from the ZMS. (4) Finally, the extruding block is gradually overprinted by general, laterally expanding contraction that starts to develop from the ZMS. This inferred sequence of deformation is tested by the Oligocene to Recent development of the Alpine-Pannonian system where late stage formation and extrusion of an orogen-parallel block started during the Oligocene. Stages 2 and 3 developed during Early to Middle Miocene, and final general contraction occurred during Late Miocene to Recent.


Normal Fault Pannonian Basin Vienna Basin Surface Uplift Lateral Extrusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aric, K., Gutdeutsch, R., Klinger, G. & Lenhardt, W. (1987) Seismological studies in the Eastern Alps. - In: Flügel, H.W. & Faupl, P., eds., Geodynamics of the Eastern Alps. pp. 325–333, Deuticke, Vienna. Google Scholar
  2. Balla, Z. (1985) The Carpathian loop and the Pannonian basin: A kinematic analysis. - Geophys. Trans., 30, 313–353.Google Scholar
  3. Becker, A. (1993) Contemporary state of stress and neotectonic deformation in the Carpathian-Pannonian region. - Terra Nova, 5, 375–388.Google Scholar
  4. Bergerat, F. (1989) From pull-apart to the rifting process: the formation of the Pannonian basin. - Tectonophysics, 157, 271–280.Google Scholar
  5. Cloetingh, S. and Burov, E. (1996) Thermomechanical structure of European continental lithosphere: constraints from rheological profiles and EET estimates. Geophys. J. Int., 124 695–723.CrossRefGoogle Scholar
  6. Fodor, L. (1995) From transpression to transtension: Oligocene-Miocene structural evolution of the Vienna basin & the Eastern Alps/Western Carpathian junction.- Tectonophysics, 242, 151–182.Google Scholar
  7. Genser, J. & Neubauer, F. (1989) Low angle normal faults at the eastern margin of the Tauern window (Eastern Alps). - Mitt. Österr. Geol. Ges., 81, 233–243.Google Scholar
  8. Gutdeutsch, R. & Aric, K. (1987) Tectonic block models based on the seismicity in the East Alpine-Carpathian and Pannonian area. - In: Flügel, H.W. & Faupl, P., Geodynamics of the Eastern Alps, pp. 309–324; Deuticke, Vienna.Google Scholar
  9. Horvath, F. and Cloetingh, S. (1996). Stress-induced late-stage subsidence anomalies in the Pannonian basin. Tectonophysics, 266, 287–300.CrossRefGoogle Scholar
  10. Kurz, W., Neubauer, F., Genser, J. & Horner, H., (1994): Sequence of Tertiary brittle deformations in the Eastern Tauern window (Eastern Alps). - Mitt. Österr. Geol. Ges., 86, 153–164.Google Scholar
  11. Kurz, W. and Neubauer, F. (1996) Deformation partitioning during updoming of the Sonnblick area in the Tauern window (Eastern Alps, Austria). J. Struct. Geol., 18, 1327–1343.CrossRefGoogle Scholar
  12. Nemes, F., Pavlik, W. & Moser, M. (1995) Geologie und Tektonik im Salza-Tal (Stmk.) - Kinematik und Paläospannungen entlang des Ennstal-Mariazell Blattver-schiebungssystems in den Nördlichen Kalkalpen. - Jb. Geol. Bundesanst., 138, 349–367.Google Scholar
  13. Nemes, F., Neubauer, F., Cloetingh, S. & Genser, J. (1997) The Klagenfurt basin in the Eastern Alps: an intra-orogenic decoupled flexural basin? - Tectonophysics, 282, 189–203. CrossRefGoogle Scholar
  14. Neubauer, F., (1988) Bau und Entwicklungsgeschichte des Rennfeld-Mugel- und des Gleinalmkristallins. Abh. Geol. Bundesanst., 42: 1–137.Google Scholar
  15. Neubauer, F. (1994) Kontinentkollision in den Ostalpen. -Geowissenschaften, 12: 136–140.Google Scholar
  16. Neubauer, F. & Genser, J. (1990) Architektur und Kinematik der östlichen Zen-tralalpen - eine Übersicht. - Mitt. naturwiss. Ver. Steiermark, 120: 203–219.Google Scholar
  17. Peresson, H. & Decker, K. (1997) Far-field effects of late Miocene subduction in the Eastern Carpathians: E-W compression and inversion of structures in the Alpine-Carpathian region. - Tectonics, 16, 38–56. CrossRefGoogle Scholar
  18. Petrascheck, W. (1924) Kohlengeologie der österreichischen Teilstaaten. VI. Braunkohlenlager der österreichischen Alpen. - Berg Hüttenmänn. Mh., 72, 5–48, 62–101.Google Scholar
  19. Polinski, R. K. & Eisbacher, H. G. (1992) Deformation partitioning during polyphase oblique convergence in the Karawanken Mountains, southeastern Alps. - J. Struct. Geol., 14, 1203–1213.CrossRefGoogle Scholar
  20. Ratschbacher, L., Behrmann, J. & Pahr, A. (1990) Penninic windows at the eastern end of the Alps and their relation to the intra-Carpathian basins. - Tectonophysics, 172, 91–105.Google Scholar
  21. Ratschbacher, L., Merle, O., Davy, Ph., Cobbold, P. (1991a) Lateral extrusion in the Eastern Alps. Part 1: Boundary conditions and Experiments scaled for gravity. - Tectonics, 10, 245–256. CrossRefGoogle Scholar
  22. Ratschbacher, L., Frisch, W., Linzer, H.G., Merle, O. (1991b) Lateral extrusion in the Eastern Alps. Part 2: Structural analysis. Tectonics, 10, 257–271.Google Scholar
  23. Royden, L.H., Horvath, F., eds. (1988): The Pannonian Basin. A Study in Basin Evolution. - Amer. Ass. Petrol. Geol. Mem., 45.Google Scholar
  24. Sachsenhofer, R. F. (1992) Coalification and thermal histories of Tertiary basins in relation to late Alpidic evolution of the Eastern Alps. - Geol. Rdschau, 81, 291–308. CrossRefGoogle Scholar
  25. Sprenger, W., Heinisch, H. (1988) Late Oligocene to Recent brittle transpressive deformation along the Periadriatic Lineament in the Lesach Valley (Eastern Alps): remote sensing and paleo-stress analysis. - Annales Tectonicae, VI/2, 134–149.Google Scholar
  26. Tapponnier, P., Molnar, P. (1976) Slip-line fields theory and large-scale continental tectonics. - Nature, 264, 319–324.Google Scholar
  27. Tari, G., Horvath, F., Rumpier, J. (1992) Styles of extension in the Pannonian Basin. - Tectonophysics, 208, 203–219.Google Scholar
  28. Wang, X., Nemes, F., Neubauer, F. (1996) Polyphase kinematics of strike-slip faulting along the Salzachtal-Ennstal fault, Eastern Alps. - In: Amann, G., Handler, R. Kurz, W., Steyrer, H.P., eds., 6.Symposium Tektonik - Strukturgeologie -Kristallingeologie, Salzburg 10.-15. April 1996, Erweiterte Kurzfassungen. Facultas-Universiätsverlag, Vienna, 466-469.Google Scholar
  29. Weber, L. and Weiss, A. (1983) Bergbaugeschichte und Geologie der österreichischen Braunkohlenvorkommen. Archiv Lagerstättenforsch. Ostalpen, 4: 1–317.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  1. 1.Institut für Geologie und PaläontologieUniversity of SalzburgSalzburgAustria
  2. 2.Institut für Geologie und PaläontologieUniversity of GrazGrazAustria
  3. 3.Dept. of Earth SciencesVrije UniversiteitAmsterdamNetherlands

Personalised recommendations