Skip to main content

Normal fault growth: Evolution of tipline shapes and slip distribution

  • Chapter
Book cover Aspects of Tectonic Faulting

Abstract

Descriptions of the 3D geometry of ancient faults suggest that single, continuous normal faults have approximately elliptical tipline shapes, with (sub)horizontal major axes. However, many examples of normal faults are not continuous, but consist of distinct, overstepping segments. Individual segments may have complex shapes as well as a vertical height that exceeds the horizontal length. Where fault segments step laterally, their tiplines are relatively straight and steeply plunging. Tiplines in relays between vertically stepping normal fault segments are also relatively straight, but have a (sub)horizontal attitude. The fault shapes appear strongly related to the presence of neighboring faults and the positions of the fault segments relative to one another.

We evaluate these observations with quasi-static 3D boundary element models consisting of two frictionless, circular normal faults in a homogeneous, linearly-elastic medium, subjected to a uniform dip-slip stress drop. The local slip gradient at the fault tipline is used to calculate the propagation tendency. Mechanical interaction enhances fault propagation at levels where the faults underlap, but impede it where they overlap. For laterally echelon segments, the overlapped portion of the tipline is likely to become straighter, and approach parallelism with the slip vector. Such straight tiplines promote linkage of segments along a continuous line rather than at one or a few points. Also, the slip-parallel, steeply plunging attitude of the line of linkage tends to minimize kinematic constraints during simultaneous slip of adjacent segments. For vertically overlapping segments, horizontal relays are predicted. These relays are perpendicular to the slip vector and thus have a limited preservation potential.

These results suggest that normal faults may consist of a patchwork of segments, linked along lines parallel and perpendicular to the overall slip vector. Each segment in turn is likely to exist of a patchwork of smaller segments. Analysis of the propagation tendency suggests that the envelope of this whole patchwork of linked segments tends to re-establish a smooth elliptical tipline and a smooth distribution of total slip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K., Characterization of barriers on an earthquake fault, J. Geophys. Res, 84, 6140–6148, 1979.

    Article  Google Scholar 

  • Andrews, D.J., A Stochastic Fault model: 1. Static case, J. geophys. Res., 85, 3867–3877, 1980.

    Article  Google Scholar 

  • Aydin, A., and A.M. Johnson, Analysis of faulting in porous sandstones, J. Struct. Geol., 5, 19–31, 1983.

    Article  Google Scholar 

  • Aydin, A., and A. Nur, Evolution of pull-apart basins and their scale independence, Tectonics, 1, 91–105, 1982.

    Article  Google Scholar 

  • Aydin, A., and R.A. Schultz, Effect of mechanical interaction on the development of strike-slip faults with echelon patterns, J. Struct. Geol., 12, 123–129, 1990.

    Article  Google Scholar 

  • Barenblatt, G.I., Mathematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7, 55–129, 1962.

    Article  Google Scholar 

  • Barnett, J.M., J. Mortimer, J. Rippon, J.J. Walsh, and J. Watterson, Displacement geometry in the volume containing a single normal fault, Am. Assoc. Pet. Geol. Bull., 71, 925–937, 1987.

    Google Scholar 

  • Becker, A.A., The boundary element method in engineering, 337 pp., McGraw-Hill Book Company, 1992.

    Google Scholar 

  • Bouvier, J.D., C.H. Kaars-Sijpesteijn, D.F. Kluesner, C.C. Onyejekwe, and R.C. Van Der Pal, Three-Dimensional Seismic Interpretation and Fault Sealing investigations, Nun River Field, Nigeria, Am. Assoc. Pet. Geol. Bull., 73, 1397–1414, 1989.

    Google Scholar 

  • Bürgmann, R., D.D. Pollard, and S.J. Martel, Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction, J. Struct. Geol, 16, 1675–1690, 1994.

    Article  Google Scholar 

  • Childs, C, S.J. Easton, B.C. Vendeville, M.P.A. Jackson, S.T. Lin, J.J. Walsh, J. Watterson, Kinematic analysis of faults in a physical model of growth faulting above a viscous salt analogue, Tectonophysics, 228, 313–329, 1993.

    Article  Google Scholar 

  • Childs, D., J. Watterson, and J.J. Walsh, Fault overlap zones within developing normal fault systems, J. Geol. Soc. Lond., 152, 535–549, 1995.

    Article  Google Scholar 

  • Comninou, M.A., J. Dunders, The angular dislocation in a half-space, J. Elasticity, 5, 203–216, 1975. Cottrell, B., and J.R. Rice, Slightly curved or kinked cracks, Int. J. Fract., 16, 155–169, 1980.

    Article  Google Scholar 

  • Cowie, P.A., and C.H. Scholz, Physical explanation for the displacement-length relationship of faults, using a post-yield fracture mechanics model, J. Struct. Geol., 14, 1133–1148, 1992.

    Article  Google Scholar 

  • Cox, S.J.D., and C.H. Scholz, On the formation and growth of faults: an experimental study, J. Struct. Geol., 10, 413–430, 1988.

    Article  Google Scholar 

  • Crouch, S.L., A.M. Starheid, Boundary element methods in solid mechanics, 322 pp., George Allen & Unwin Ltc, London, 1983.

    Google Scholar 

  • Cruikshank, K.M., G. Zhao, and A.M. Johnson, Duplex structures connecting fault segments in Entrada Sandstone, J. Struct. Geol., 13, 1185–1196, 1991.

    Article  Google Scholar 

  • Das, S., and K. Aki, Fault Plane with barriers: a versatile earthquake model, J. geophys. Res., 82, 5658–5670, 1977.

    Article  Google Scholar 

  • Davy, P., On the frequency-length distribution of the San Andreas Fault system, J. Geophys. Res., 98, 12141–12151, 1993.

    Article  Google Scholar 

  • Dawers, N.H., and M.H. Anders, Displacement-length scaling and fault linkage, J. Struct. Geol., 17 (5), 607–614, 1995.

    Article  Google Scholar 

  • Du, Y., and A. Aydin, The maximum distortional strain energy density criterion for shear fracture propagation with applications to the growth paths of en echelon faults, Geophys. Res. Let., 20, 1091–1094, 1993.

    Article  Google Scholar 

  • Du, Y., and A. Aydin, Shear fracture patterns and connectivity at geometric complexities along strike-slip faults, J. geophys. Res., 100, 18093–18102, 1995.

    Article  Google Scholar 

  • Dugdale, D.S., Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8, 100–104, 1960.

    Article  Google Scholar 

  • Gay, N.C., and W.D. Ortlepp, Anatomy of a mining-induced fault zone, Geol. Soc. Am. Bull., 90, 47–58, 1979.

    Article  Google Scholar 

  • Gillespie, P.A., J.J. Walsh, and J. Watterson, Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation, J. Struct. Geol., 14, 1157–1172, 1992.

    Article  Google Scholar 

  • Ida, Y., Cohsive force across the tip of longitudinal shear crack and Griffith’s specific surface energy, J. Geophys. Res., 77, 3796–3805, 1972.

    Article  Google Scholar 

  • Irwin, G.R., Analyses of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech., 24, 361–364, 1957.

    Google Scholar 

  • Jev, B.I., C.H. Kaars-Sijpesteijn, M.P.A.M. Peters, N.L. Watts, & J.T. Wilkie, Akaso Field, Nigeria: Use of integrated 3-D seismic, fault slicing, clay smearing, & RFT-pressure data on fault trapping & dynamic leakage, Am. Assoc. Pet. Geol. Bull., 77, 1389–1404, 1993. Jeyakumaran, M.,

    Google Scholar 

  • J.W. Rudnicki, and L.M. Keer, Modeling slip zones with triangular dislocation elements, Seis. Soc. Am. Bull., 82, 2153–2169, 1992.

    Google Scholar 

  • Kanamori, H., The nature of seismicity patterns before large earthquakes., in Earth-quake prediction: an international review, edited by D. Simpson, Richards, AGU Maurice Ewing Series, 1981.

    Google Scholar 

  • Kronberg, P., Geometries of extensional fault systems, observed and mapped on aerial and satellite photographs of Central Afar, (Ethiopia/Djibouti), Geologie en Mijnbouw, 70, 145–161, 1991.

    Google Scholar 

  • Larsen, P.H., Relay structures in a Lower Permian basement-involved extension system, East Greenland, J. Struct. Geol., 10, 3–8, 1988.

    Article  Google Scholar 

  • Lawn, B.R., and T.R. Wilshaw, Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1975.

    Google Scholar 

  • Li, V.C., Mechanics of shear rupture, in Fracture mechanics of rocks, edited by B.K. Atkinson, pp. 351–428, Academic Press, London, 1987.

    Google Scholar 

  • Mandl, G., Discontinuous fault zones, J. Struct. Geol., 9, 105–110, 1987.

    Article  Google Scholar 

  • Mandl, G., Mechanics of Tectonic Faulting: Models & Basic Concepts, 407 pp., Elsevier, Amsterdam, 1988.

    Google Scholar 

  • Mansfield, C.S., and J.A. Cartwright, High resolution fault displacement mapping from 3-D seismic data: evidence for dip-linkage during fault growth, J. Struct. Geol., 18, 249–263, 1996.

    Article  Google Scholar 

  • McGarr, A., D.D. Pollard, N.C. Gay, & W.D. Ortlepp, Observations & analysis of structures in exhumed mine-induced faults, in Conference VIII: Analysis of actual fault zones in Bedrock., pp. 101–120, USGS, Menlo Park, California, 1979.

    Google Scholar 

  • Moore, D.E., and D.A. Lockner, The role of microcracking in shear-fracture propagation in granite, J. Struct. Geol, 17, 95–114, 1995.

    Article  Google Scholar 

  • Morley, C.K., R.A. Nelson, T.L. Patton, and S.G. Munn, Transfer zones in the East African rift system and their relevance to hycrocarbon exploration in rifts, Am. Assoc. Pet. Geol. Bull., 74, 1234–1253, 1990.

    Google Scholar 

  • Muraoka, H., and H. Kamata, Displacement distribution along minor fault traces, J. Struct. Geol, 5, 483–495, 1983.

    Article  Google Scholar 

  • Nicol, A., J.J. Walsh, J. Watterson, and P.G. Bretan, Three-dimensional geometry and growth of conjugate normal faults, J. Struct. Geol., 17 (6), 847–862, 1995.

    Article  Google Scholar 

  • Nicol, A., J. Watterson, J.J. Walsh, and C. Childs, The shapes, major axis orientations and displacement patterns of fault surfaces, J. Struct. Geol., 18, 235–248, 1996.

    Article  Google Scholar 

  • Olson, J., Fracture Mechanics analysis of joints and veins, PhD thesis, Stanford University, 1991.

    Google Scholar 

  • Olson, J.E., D.D. Pollard, Inferring stress states from detailed joint geometry, in Key questions in Rock Mechanics, edited by P.A. Cundall, R.L. Sterling, A.M. Starheid, pp. 159–167, Balkema, Rotterdam, 1988.

    Google Scholar 

  • Olson, J.E., and D.D. Pollard, The initiation and growth of en echelon veins, J. Struct. Geol., 13, 595–608, 1991.

    Article  Google Scholar 

  • Palmer, A.C., and J.R. Rice, The growth of slip surfaces in the progressive failure of overconsolidated clay, Proc. Roy. Soc. Lond., A332, 527–548, 1973.

    Article  Google Scholar 

  • Paris, P.C., G.C. Sih, Stress analysis of cracks, in Fracture Toughness Testing, pp. 30–83, American Society for Testing Materials, Special Technical Publication, 1965.

    Google Scholar 

  • Peacock, D.C.P., Displacement & segment linkage in strike-slip fault zones, J. Struct. Geol., 13, 1025–1035, 1991. Peacock, D.C.P., D.J. Sanderson, Displacements, segment linkage and relay ramps in normal fault zones, J. Struct. Geol., 13, 721–733, 1991.

    Google Scholar 

  • Peacock, D.C.P., and D.J. Sanderson, Displacements, segment linkage and relay ramps in normal fault zones, J. Struct. Geol., 13, 721–733, 1991.

    Article  Google Scholar 

  • Peacock, D.C.P., and D.J. Sanderson, Geometry and development of relay ramps in normal fault systems, Am. Assoc. Pet. Geol. Bull., 78, 147–165, 1994.

    Google Scholar 

  • Peacock, D.C.P., and D.J. Sanderson, Strike-slip relay ramps, J. Struct. Geol., 17, 1351–1360, 1995.

    Article  Google Scholar 

  • Peng, S., and A.M. Johnson, Crack growth and faulting in cylindrical specimens of Chelmsford granite, Int. J. Rock Mech. and Mining Sci., 9, 37–86, 1972.

    Article  Google Scholar 

  • Petit, J.P., and M. Barquins, Can natural faults propagate under mode-II conditions?, Tectonics, 7, 1243–1256, 1988.

    Article  Google Scholar 

  • Pollard, D.D., and A. Aydin, Propagation and linkage of oceanic ridge segments, J. Geophys. Res., 89, 10017–10028, 1984.

    Article  Google Scholar 

  • Pollard, D.D., S.D. Saltzer, and A.M. Rubin, Stress inversion methods; are they based on faulty assumptions?, J. Struct. Geol., 15, 1045–1054, 1993.

    Article  Google Scholar 

  • Pollard, D.D., P. Segall, Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, dikes, and solution surfaces, inFracture mechanics of rocks, edited by B.K. Atkinson, Academic Press, London, 1987.

    Google Scholar 

  • Pollard, D.D., P. Segall, and P. Delaney, Formation and interpretation of dilatant echelon cracks, Bull. Geol. Soc. Am., 93, 1291–1303, 1982.

    Article  Google Scholar 

  • Rice, J.R., Mathematical analysis in the mechanics of fracture, in Fracture: An advanced treatise, edited by H. Liebowitz, pp. 191–311, Academic Press, San Diego, 1968.

    Google Scholar 

  • Rice, J.R., Theory of precursory processes in the inception of earthquake rupture, Gerlands Beitrage Geophys., 88, 91–127, 1979.

    Google Scholar 

  • Rippon, J.H., Contoured patterns of throw and hade of normal faults in the coalmeasures (Westphalian) of northeast Derbyshire, Proc. Yorks. Geol. Soc, 45, 147–161, 1985.

    Article  Google Scholar 

  • Rudnicki, J.W., Fracture mechanics applied to the earth’s crust, Ann. Rev. Earth Planet. Sci., 8, 489–525, 1980. Segall, P., D.D.

    Google Scholar 

  • Pollard, Mechanics of discontinuous faults, J. Geophys. Res., 85 (B8), 4337–4350, 1980.

    Article  Google Scholar 

  • Segall, P., and D.D. Pollard, Nucleation and growth of strike slip faults in granite, J. Geophys. Res., 88, 555–568, 1983.

    Article  Google Scholar 

  • Shen, B., O. Stephansson, H.H. Einstein, B. Ghahreman, Coalescence of fractures under shear stresses in experiments, J. Geophys. Res., 100 (B4), 5975–5990, 1995.

    Article  Google Scholar 

  • Sih, G.C., Three Dimensional Crack Problems, 452 pp., Noordhoff International, Leiden, 1975.

    Google Scholar 

  • Sneddon, I.N., The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. Roy. Soc. London, Section A, 187, 229–260, 1946.

    Article  Google Scholar 

  • Tada, H., P.C. Paris, and G.R. Irwin, The Stress Analysis of Cracks Handbook, Paris Productions Incorporated (and Del Research Corporation), St. Louis, 1985.

    Google Scholar 

  • Thomas, A.L., Poly3D: a three-dimensional, polygonal element, displacement discontinuity boundary element computer program with applications to fractures, faults, and cavities in the Earth’s crust, MSc thesis, Stanford University, 1993.

    Google Scholar 

  • Thomas, A.L., and D.D. Pollard, The geometry of echelon fractures in rock: implications from laboratory and numerical experiments, J. Struct. Geol., 15, 323–334, 1993.

    Article  Google Scholar 

  • Walsh, J.J., and J. Watterson, Analysis of the relationship bewteen displacements and dimensions of faults, J. Struct. Geol., 10, 239–247, 1988.

    Article  Google Scholar 

  • Walsh, J.J., and J. Watterson, Displacement gradients of fault surfaces, J. Struct. Geol., 11 (3), 307–316, 1989.

    Article  Google Scholar 

  • Walsh, J.J., J. Watterson, Geometric and kinematic coherence & scale effects in normal fault systems, in The Geometry of Normal Faults, edited by A.M. Roberts, G. Yielding, B. Freeman, pp. 193–203, Geol. Soc. Lond. Spec. Publ., 1991.

    Google Scholar 

  • Willemse, E.J.M., Segmented normal faults: correspondence between three-dimensionalmechanical models and field data, J. Geophys. Res., 102, 675–692, 1997.

    Article  Google Scholar 

  • Willemse, E.J.M., D.D. Pollard, and A. Aydin, 3D analysis of slip distributions along echelon normal fault arrays with consequences for fault scaling, J. Struct. Geol., 18, 295–309, 1996.

    Article  Google Scholar 

  • Williams, M.L. , On the stress distribution at the base of a stationary crack, J. Appl. Mech., 24 (109–114), 1957.

    Google Scholar 

  • Wong, T.F., On the normal stress dependency of the shear fracture energy, in Earthquake source mechanics, edited by S. Das, J. Boatwright, C.H. Scholz, pp. 1–12, AGU, Washingon, D.C., 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Willemse, E.J.M., Pollard, D.D. (2000). Normal fault growth: Evolution of tipline shapes and slip distribution. In: Lehner, F.K., Urai, J.L. (eds) Aspects of Tectonic Faulting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59617-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59617-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64053-7

  • Online ISBN: 978-3-642-59617-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics