Skip to main content

Transgenic Pearl Millet (Pennisetum glaucum)

  • Chapter
Transgenic Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 46))

Abstract

Pearl millet (Pennisetum glaucum), a robust bunch grass cereal, occupies an estimated 40 million ha of the earth’s surface. Although growing in most continents of the world, the largest cultures of pearl millet are found in the arid regions of India and Pakistan. Pearl millet grows also in most African countries, but assumes its greatest importance as a cereal for human consumption in West Africa between the Sahara and the tropical forest. Pearl millet is unusually tolerant to drought and heat and has the ability to grow and produce grains on sandy, rocky soils that are too infertile, dry, acidic, or saline to cultivate maize, sorghum, or rice. Primarily used as a grain crop, pearl millet supplies 80 to 90% of the calories for millions of people in the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basavaraju r, Safeeula KM, Murthy BR (1980) genetics of resistance to downy mildew in pearl millet. In: gupta vp, minocha jl (eds) trends in genetical research on pennisetums. Indian council of agricultural research, new delhi, pp 79–90.

    Google Scholar 

  • Basset CL, Rawson J, Jernstedt JA(1998) DNA and RNA levels in bundle sheath and mesophyll cells of pearl millet (pennisetum americanum). Plant physiol 87:307–310.

    Article  Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336.

    Article  PubMed  CAS  Google Scholar 

  • Bevan MW, Barnes MW, Chilton M-D (1983) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 11:369–385.

    Article  PubMed  CAS  Google Scholar 

  • Bilang R, Iida S, Peterhans A, Potrykus I, Paszkowski J (1991) The 3’-terminal region of the hygromycin B resistance gene is important for its activity in F coli and N tabacum. Gene 100:247-250

    Google Scholar 

  • Bradford MM (1976)A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 72:248-254

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Wallace AT, Rachie KO (1972) Chemical composition and nutritive value of pearl millet (Pennisetum typhoides) grain. Crop Sei 12:187–188

    Article  CAS  Google Scholar 

  • Cabanas MJ, Vazquez D, Modolell J (1978) Dual interference of hygromycin B with ribosomal translocation and with aminoacyl-tRNA recognition. Eur J Biochem 87:21–27

    Article  PubMed  CAS  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  PubMed  CAS  Google Scholar 

  • Chandler SF, Vasil IK (1984) Optimization of plant regeneration from long-term embryogenic callus cultures of Pennisetum purpureum. J Plant Physiol 117:147–156.

    Google Scholar 

  • Chu CC (1978) The N6 medium and its applications to anther culture of cereal crops. In: Pro¬ceedings of Symposium on Plant Tissue Culture. Science Press, Peking, pp 43–50

    Google Scholar 

  • Dalton SJ, Bettany AJE, Morris P (1995) The effect of selection pressure on transformation fre¬quency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.) Plant Sei 108:63–70

    Article  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expres¬sion of a detoxifying enzymes. EMBO J 6:2513–2518.

    PubMed  CAS  Google Scholar 

  • De Greve H, Dhaese P, Seurinck J, Lemmers M, Van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1:499–512.

    PubMed  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Olmedo F, Salcedo G, Sanchez-Monge R, Gomez L, Royo J, Carbonero P (1987) Plant proteinaceous inhibitors of proteinases and cc-amylases. Oxf Surv Plant Mol Cell Biol 4:275–334.

    CAS  Google Scholar 

  • Gritz L, Davies J (1983) Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cere-visiae. Gene 25:179–188.

    Article  PubMed  CAS  Google Scholar 

  • Hauptmann RM, Vasil V, Ozias-Akins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformation in the Gramineae. Plant Physiol 86:602–606

    Article  PubMed  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 300:160–163.

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405.

    Article  CAS  Google Scholar 

  • Jones PA (1985) Altering gene expression with 5-azacytidine. Cell 40:486–488.

    Article  Google Scholar 

  • Kishor PBK, Dhar AC, Naidu KR (1992). Plant regeneration in tissue cultures of some millets. Indian J Exp Bot 30:729–733

    CAS  Google Scholar 

  • Klaas M, John MC, Crowell DN, Amasino RM (1989) Rapid induction of genomic demethylation and T-DNA gene expression in plant cells by 5-azacytosine derivatives. Plant Mol Biol 12:413–423

    Article  CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73.

    Article  CAS  Google Scholar 

  • Lambé P (1995) Etude de l’intégration, de l’expression, de la stabilité de transgenes introduits par bombardement de microprojectiles et de la regeneration de plantes transgéniques chez une céréale, le Mil Pénicillaire (Pennisetum glaucum). PhD Thesis, Uni¬versity of Liege.

    Google Scholar 

  • Lambé P, Dinant M. Integration, expression and stability of selectable and co-transferred transgenes in pearl millet (Pennisetum glaucum) after introduction by particle bombardment (submitted).

    Google Scholar 

  • Lambé P, Dinant M, Matagne RF, Ledoux L (1991) Genetic transformation of Nicotiana plumbaginifolia cells using a low-cost particle gun device. Arch Int Physiol Biochem Biophys 99:6.

    Google Scholar 

  • Lambé P, Dinant M, Ledoux L, Matagne RF (1993) Factors affecting transient expression of ß-glucuronidase gene in pearl millet (Pennisetum Typhoides) folowing microprojectile bombardment. Arch Int Physiol Biochem Biophys 101,5.

    Google Scholar 

  • Lambé P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and ß-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sei 108:51–62

    Google Scholar 

  • Lambé P, Mutambel H, Fouché J-G, Deltour R, Foidart J-M, Gaspar T (1997) DNA methylation as a key process in regulation of organogenic totipotency and plant neoplastic progression? In Vitro Cell Dev Biol 33:155–163.

    Article  Google Scholar 

  • Lambé P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum glaucum): strategies to reduce genotype limitation and to maintain long-term totitpotency. Plant Cell Tissue Organ Cult 55:23–29

    Google Scholar 

  • Last DI, Brettel RI, Chamberlain DA, Chaudhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81:581–588.

    Article  CAS  Google Scholar 

  • Luehrsen KR, Walbot V (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 225:81–93.

    Article  PubMed  CAS  Google Scholar 

  • Moreno J, Chrispeels MJ (1989) A lectin gene encodes the a-amylase inhibitors of the common bean. Proc Natl Acad Sei USA 86:7885–7889

    Article  CAS  Google Scholar 

  • Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson CJ (1986) The Bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol Gen Genet 205:42–50.

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Nagarathna KC, Shetty SA, Harinarayana G, Shekar Shetty H (1993) Selection for downy mildew resistance from the regenerants of pearl millet. Plant Sei 90:53–61.

    Google Scholar 

  • Novel G, Novel M (1973) Mutants d’Escherichia coli K12 affectés pour leur croissance sur méthyl- ß-D-glucuronides: localisation du géne de structure de la ß-D-glucuronidase (uidA). Mol Genet 120:319–335.

    CAS  Google Scholar 

  • Odell JT, Nagy F, Chua N-H (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812.

    Article  PubMed  CAS  Google Scholar 

  • Peterhans A, Datta SK, Datta K, Goodal GJ, Potrykus I, Paszkowski J (1990) Recognition efficiency of dicotyledoneae-specific promoter and RNA processing signals in rice. Mol Gen Genet 222:361–368

    Article  PubMed  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1985) Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69–76.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Turner NE, Hironaka CM, Sanders PR, Gasser CS, Aykent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide toler¬ance in transgenic plants. Science 233:478–481.

    Article  PubMed  CAS  Google Scholar 

  • Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341.

    PubMed  CAS  Google Scholar 

  • Spencer TM, O’Brien JV, Start WG, Adams TR, Gordon-Kamm WJ, Lemaux PG (1992) Segre¬gation of transgenes in maize. Plant Mol Biol 18:201–210.

    Article  PubMed  CAS  Google Scholar 

  • Tatham AS, Miflin BJ, She wry PR (1985) The ß-turn conformation in wheat gluten proteins: rela¬tionship to gluten elasticity. Cereal Chem 62:405–412.

    Google Scholar 

  • Töpfer R, Schell J, Steinbiss H-H (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16:8725.

    Article  PubMed  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128:193–218.

    Google Scholar 

  • Vasil V, Vasil IK (1981) Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann Bot 47:669–678.

    Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation. char¬acterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sei USA 84:5449–5453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lambé, P., Dinant, M., Deltour, R. (2000). Transgenic Pearl Millet (Pennisetum glaucum). In: Bajaj†, Y.P.S. (eds) Transgenic Crops I. Biotechnology in Agriculture and Forestry, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59612-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59612-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64051-3

  • Online ISBN: 978-3-642-59612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics