Skip to main content

Transgenic Sorghum (Sorghum bicolor)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 46))

Abstract

Sorghum, Sorghum bicolor (L.) Moench, is the fifth most important cereal in the world. It was domesticated from Sorghum bicolor subsp. arundinaceum in northeast Aftica, and is presently grown widely in semiarid areas of central and north Africa, India, China, and the Americas (Doggett 1988). Sorghum is adapted to harsh environments, and gives reasonable yields in environments that are too hot and dry for other cereals. The grain is used mostly for human consumption in Africa and Asia, for breads, porridges, brewing, and wine making. In the Americas and Australia, the grain is used primarily for stock-feed. In addition, dual purpose and forage sorghums are used widely in the beef and dairy cattle industries for direct grazing and silage. In the developing world, the stover is as important as the grain, as it has a wide range of uses, including animal feed, building material, and firewood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axtell JD (1994) Breeding sorghum for increased nutritional value. INTSORMIL Annu Rep 1994, Lincoln, Nebraska, pp 93–99.

    Google Scholar 

  • Battraw M, HallTC (1991) Stable transformation of Sorghum bicolor protoplasts with chimaeric neomycin phosphotransferase II and ß-glucuronidase genes. Theor Appl Genet 82:161–168

    Article  CAS  Google Scholar 

  • Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature.

    Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of.

    Google Scholar 

  • Callis JM, Fromm M, Walbott V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200.

    Article  PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AJ, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sei USA 90:11212–11216.

    Article  CAS  Google Scholar 

  • Doggett H (1988) Sorghum. Longman, London.

    Google Scholar 

  • Finer J J, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328.

    Article  CAS  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back! Bio/Technology12:883–888.

    Article  Google Scholar 

  • Fromm ME, Taylor LP, Walbott V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793.

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TMA (1987) The 5’leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res 15:3257–3272.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158.

    Article  PubMed  CAS  Google Scholar 

  • Godwin I, Chikwamba R (1994) Transgenic grain sorghum (Sorghum bicolor) plants via Agrobacterium. In: Henry RJ, Ronalds JA (eds) Improvement of cereal quality by genetic engineering. Plenum Press, New York pp 47–54.

    Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell cultures after bom¬bardment with DNA-coated microprojectiles. Plant Cell Rep 10:260–264.

    Article  CAS  Google Scholar 

  • Hamaker BR (1994) Chemical and physical aspects of food and nutritional quality of sorghum. INTSORMIL Annu Rep 1994, Lincoln, Nebraska, pp 138–142.

    Google Scholar 

  • Kononowicz AK, Casas AM, Tomes DT, Bressan RA, Hasegawa PM (1995) New vistas are opened for sorghum improvement by genetic transformation. Afr Crop Sei J 3:171–180.

    Google Scholar 

  • Lomonosoff GP (1995) Pathogen-derived ressitance to plant viruses. Annu Rev Phytopathol 33:323–343.

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Newell CA, Lowe JM, Merryweather A, Rooke LM, Hamilton WDO (1995) Transformation of sweet potato [Ipomoea batatas(L.)Lam.]with Agrobacterium tumefaciens and the regenera00ACtion of plants expressing cowpea trypsin inhibitor and snowpea lectin.Plant Cell Rep 107:215–227

    CAS  Google Scholar 

  • Nwanze K (1993) Identification and development of insect-resistant sorghum. International Sorghum Research Planning Workshop, Brisbam, Australia, p 55.

    Google Scholar 

  • Rathus C, Bower R, Birch RG (1993) Effects of promoter, intron and enhancer elements on transient gene expression in sugar-cane and carrot protoplasts. Plant Mol Biol 23:613–618.

    Article  PubMed  CAS  Google Scholar 

  • Rathus C, Adkins AL, Henry RJ, Adkins SW, Godwin ID (1996) Progress towards transgenic sorghum. In: Foale MA, Henzell RG, Kneipp JF (eds) Proceedings of the 3rd Australian Sorghum Conference, Tamworth, Feb 20–22. occasional publication, no 93. Australian Institute of Agricultural Science, Melbourne, pp 409–414.

    Google Scholar 

  • Sanford JC, Devit MJ, Russell JA, Smith FD, Harpending PR, Roy MK, Johnson SA (1991) An.

    Google Scholar 

  • Shade RE, Schroeder HE, Pueyo JJ, Tabe LM, Murdock LL, Higgins TJV, Chrispeels MJ (1994).

    Google Scholar 

  • Thomas JC, Adams DG, Keppenne VD, Wasmann CC, Brown JK, Kanost MR, Bohnert HJ (1995) Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant Cell Rep.

    Google Scholar 

  • Thompson CJ, Novva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterisation of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523.

    PubMed  CAS  Google Scholar 

  • Toler RW (1986) Diseases caused by viruses and viruslike organisms. In: Frederiksen RA (ed) Compendium of sorghum diseases. APS Press, St Paul, Minnesota, pp 42–49.

    Google Scholar 

  • Vain P, Keen N, Murillo J, Rathus C, Nemes C, Finer JJ (1993) Development of the particle inflow gun. Plant Cell Tissue Organ Cult 33:237–246.

    Article  CAS  Google Scholar 

  • Wei Z-M, Xu Z-H (1990) Regeneration of fertile plants from embryogenic suspension culture protoplasts of Sorghum vulgare. Plant Cell Rep 9:51–53.

    Article  CAS  Google Scholar 

  • Whalon ME, Norris D (1997) Bacillus thuringiensis transgenic plants: will resistance kill the promise? In: McLean GD, Waterhouse PM, Evans G, Gibbs MJ (eds) Commercialisation of transgenic crops: risks, benefits benefits and trade considerations. Cooperative Research Centre for Plant Science and Bureau of Resource Sciences, Canberra, pp 243–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rathus, C., Godwin, I.D. (2000). Transgenic Sorghum (Sorghum bicolor). In: Bajaj†, Y.P.S. (eds) Transgenic Crops I. Biotechnology in Agriculture and Forestry, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59612-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59612-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64051-3

  • Online ISBN: 978-3-642-59612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics