Skip to main content

Transgenic Wheat (Triticum spp.)

  • Chapter
  • 302 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 46))

Abstract

Wheat (Triticum) is widely cultivated as a small grain cereal crop from sea level to altitudes over 3000 m. Today, wheat occupies approximately 20% of the world’s cultivated land and is considered to be one of the most important agricultural commodities in international trade. Most wheat is grown in the Northern Hemisphere; North America, Europe, China, and Russia account for over 80% of the world’s supply. Wheat provides about 20% of the world’s food calories and is a staple for nearly 40% of the world’s population. Improvements to this and other cereal crops, for example, by altering amino acid content or enhancing pest resistance and herbicide tolerance, are of great potential benefit. Changes to wheat have been created through traditional breeding programs; however, recent advances in biotechnology have made it possible to modify its genetic composition. One of the advantages of biotechnology is that specific traits can be targeted for alteration. This can take less time than classic breeding programs, and foreign genetic material encoding new traits can be introduced from organisms that could not be introduced via breeding.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altpeter F, Vasil V, Srivastava V, Stöger E, Vasil IK (1996a) Accelerated production of transgenic wheat (Triticum aestivumL.) plants. Plant Cell Rep 16:12–17.

    Article  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil I (1996b) Integration and expression of the high-molecular-weight glutenin subunit lAxl gene into wheat. Nat Biotechnol 14:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong TA, Metz SG, Mascia PN (1987) Two regeneration systems for the production of haploid plants from wheat anther culture. Plant Sei 51:231–237.

    Article  Google Scholar 

  • Bajaj YPS (ed) (1990a) Biotechnology in agriculture and forestry, vol 13. Wheat. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Bajaj YPS (1990b) Induction of haploids, pollen embryogenesis, ultrastructure, and genetic stability. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12. Haploids in crop improvement I. Springer, Berlin Heidelberg New York, pp 3–44.

    Google Scholar 

  • Becker D, Brettschneider, Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5:299–307.

    Article  PubMed  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacteriumvectors for plant transformation. Nucleic Acids Res 12:8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Bidney D (1992) Microprojectile bombardment of plant tissues increases transformation frequency byAgrobacterium tumefaciens. Plant Mol Biol 18:301–313.

    Article  PubMed  CAS  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879.

    Article  PubMed  CAS  Google Scholar 

  • Bommineni VR, Jauhar PP, Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Hered 88:474–481.

    Google Scholar 

  • Cheng M, Fry JE, Pang SZ, Zhou HP, Hironaka CM, Duncan DR, Conner TW, Wan YC (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980.

    PubMed  CAS  Google Scholar 

  • Chibbar RN, Kartha KK, Leung N, Qureshi J, Caswell K (1991) Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivum) through microprojectile bombardment. Genome 34:453–460.

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail P (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689.

    Article  PubMed  CAS  Google Scholar 

  • Cordewener JHG, Custers JBM, Dons HJM, Van Lookeren Campagne MM (1995) Molecular and biochemical induction of microspore embryogenesis. In: Jain SM, Sopory SK, Veilleux RE (eds) In vitro haploid production in higher plants, vol 1. Kluwer, Dordrecht, pp 107–122.

    Google Scholar 

  • Daniell H, Krishnan M, McFadden BF (1991) Transient expression of ß-glucuronidase in different cellular compartments following biolistic delivery of foreign DNA into wheat leaves and caUi. Plant Cell Rep 9:615–619.

    Article  CAS  Google Scholar 

  • DeBlock M (1993) The cell biology of plant transformation: current state, problems, prospects and the implications for the plant breeding. Euphytica 71:1–14.

    Article  Google Scholar 

  • De Block M, Debrouwer D, Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor Appl Genet 95:125–131.

    Google Scholar 

  • De Buyser J, Henry Y, Lonnet P, Hertzog R, Hespel A (1987) “Florin”a doubled haploid wheat variety developed by the anther culture method. Plant Breed 98:53–56.

    Google Scholar 

  • Dekeyser RA, Claes B, De Rycke RMU, Habets ME, van Montagu MC, Caplan AB (1990) Transient expression in intact and organized rice tissues. Plant Cell 2:591–602.

    Article  PubMed  CAS  Google Scholar 

  • D’Halluin K, Bonne E, Bossut M, DeBeuckeieer M, Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4:1495–1505.

    Article  PubMed  Google Scholar 

  • Fullner KJ, Nester EW (1996) Temperature affects the T-DNA transfer machinery of Agrobacterium tumefaciens. J Bacteriol 178:1498–1504.

    PubMed  CAS  Google Scholar 

  • Gallo-Meagher M, Irvine JE (1993) Effects of tissue type and promoter strength on transient GUS expression in sugarcane following particle bombardment. Plant Cell Rep 12:666–670.

    Article  CAS  Google Scholar 

  • Guerrero FD, Crossland L, Smutzer GS, Hamilton DA, Mascarenhas JP (1990) Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet 224:161–168.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DA, Mihir R, Rueda J, Sindhu RK, Sanford J, Mascarenhas JP (1992) Dissection of a pollen-specific promoter from maize by transient transformation assays. Plant Mol Biol 18:211–218.

    Article  PubMed  CAS  Google Scholar 

  • He DG, Mouradov A, Yang YM, Mouradova E, Scott KJ (1994) Transformation of wheat (Triticum aestivumL.) through electroporation of protoplasts. Plant Cell Rep 14:192–196.

    Article  CAS  Google Scholar 

  • Hu H (1986) Wheat: improvement through anther culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer, Berlin Heidelberg New York, pp 55–72.

    Google Scholar 

  • Klöti A, Iglesias VA, Wiinn J, Burkhardt PK, Datta SK, Potrykus I (1993) Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep 12:671–675.

    Article  Google Scholar 

  • Langridge P, Brettschneider R, Lazzeri P, Lörz H (1992) Transformation of cereals via Agrobacteriumand the pollen pathway: a critical assessment. Plant J 4:631–638.

    Article  Google Scholar 

  • Li XQ, Liu CN, Ritchie SW, Peng JY, Gelvin SB, Hodges TK (1992) Factors influencing Agrobacterium-mediated transient expression of gusA in rice. Plant Mol Biol 20:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein C, Draper J (1986) Genetic engineering of plants. In: Glover DM (ed) DNA cloning: a practical approach, vol 2. IRL Press, Oxford, pp 67–119.

    Google Scholar 

  • Loeb TA, Reynolds TL (1994) Transient expression of the uidA gene in pollen embryoids of wheat following microprojectile bombardment. Plant Sei 104:81–91.

    Article  CAS  Google Scholar 

  • Lonsdale D, Önde S, Cuming A (1990) Transient expression of exogenous DNA in intact viable wheat embryos following particle bombardment. J Exp Bot 41:1161–1165.

    Article  CAS  Google Scholar 

  • Maheshwari N, Rajyalakshmi K, Baweja K, Dhir SK, Chowdhry N, Maheshwari SC (1995) In vitro culture of wheat and genetic transformation - retrospect and prospect. Crit Rev Plant Sei 14:149–178.

    Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in ricetransformation. Plant Cell 2:163–171.

    Article  PubMed  CAS  Google Scholar 

  • Mejza SJ, Morgant V, DiBona DE, Wong JR (1993) Plant regeneration from isolated microspores of Triticum aestivum. Plant Cell Rep 12:149–153.

    Article  Google Scholar 

  • Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tumefacienstransfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174:2288-.

    Google Scholar 

  • Mooney PA, Goodwin PB (1994) Genetic transformation in Triticumspecies (wheat). In: Bajaj YPS (ed), Biotechnology in agriculture and forestry, vol 29. Plant protoplasts and genetic engineering V. Springer, Berlin Heidelberg New York, pp 383–400.

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497.

    Article  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Baga M, Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J 5:285–297.

    Article  CAS  Google Scholar 

  • Ortiz JPA, Reggiardo MI, Ravizzini RA, Altabe SG, Cervigni GDL, Spitteler MA, Morata MM, Elias FE, Vallejos RH (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep 15:877–881.

    Article  CAS  Google Scholar 

  • Perl A, Kiess H, Blumenthal A, Galili G, Galum E (1992) Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol Gen Genet 235:279–284.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TL (1993) A cytological analysis of microspores of Triticum aestivum(Poaceae) during normal ontogeny and induced embryogenic development. Am J Bot 80:569–576.

    Article  Google Scholar 

  • Reynolds TL (1997) Pollen embryogenesis: a mini-review. Plant Mol Biol 33:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds TL, Kitto SL (1992) Identification of embryoid-abundant genes that are temporally expressed during pollen embryogenesis in wheat anther cultures. Plant Physiol 100:1744–1750.

    Article  PubMed  CAS  Google Scholar 

  • Schlappi M, Hohn B (1992) Competence of immature embryos for Agrobacterium-mediated gene transfer. Plant Cell 4:7–16.

    Article  PubMed  Google Scholar 

  • Simmonds J, Stewart P, Simmonds D (1992) Regeneration of Triticum aestivumapical explants after microinjection of germ line progentitor cells with DNA. Physiol Plant 85:197–206.

    Article  CAS  Google Scholar 

  • Takumi S, Shimada T (1995) Effects of three promoters on stable integration of the herbicide-resistant gene in wheat cultured cells through particle bombardment. Bull RIAR, Ishikawa Agric Coll 4:9–16.

    Google Scholar 

  • Takumi S, Otani M, Shimada T (1994) Effect of six promoter-intron combinations on transient reporter gene expression in einkorn, emmer and common wheat cells by particle bombardment. Plant Sei 103:161–166.

    Article  CAS  Google Scholar 

  • Taylor MG, Vasil V, Vasil IK (1993) Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep 12:491–495.

    CAS  Google Scholar 

  • Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheatplants obtained by microprojectile bombardment of regenerable embryonic callus.Bio/Technology 10:667–674.

    Google Scholar 

  • Vasil V, Srivastava V, Castillo AM, Fromm ME, Vasil IK (1993) Rapid production of transgenicwheat plants by direct bombardment of cultured immature embryos. Bio/Technology11:1553–1558.

    Article  Google Scholar 

  • Wan Y Lemaux PG (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48.

    PubMed  CAS  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084.

    PubMed  CAS  Google Scholar 

  • Witrzens B, Bretteil RIS, Murray FR, McElroy D, Li Z, Dennis ES (1998) Comparison of three selectable marker genes for transformation of wheat by microprojectile bombardment. Aust J Plant Physiol 25:39–44.

    Article  CAS  Google Scholar 

  • Zaghmout OMF (1994) Transformation of protoplasts and intact cells from slowly growing embryogenic callus of wheat (Triticum aestivum L.). Theor Appl Genet 89:577–582.

    Article  Google Scholar 

  • Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE (1995) Glyphosphate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep 15:159–163.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loeb, T.A., Spring, L.M., Steck, T.R., Reynolds, T.L. (2000). Transgenic Wheat (Triticum spp.). In: Bajaj†, Y.P.S. (eds) Transgenic Crops I. Biotechnology in Agriculture and Forestry, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59612-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59612-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64051-3

  • Online ISBN: 978-3-642-59612-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics