Skip to main content

Genetic Transformation of Casuarina glauca

  • Chapter
Book cover Transgenic Trees

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 44))

  • 488 Accesses

Abstract

Casuarina glauca Sieb, ex Spreng (Casuarinaceae family) is a tall tropical tree. Its natural habitat is centered on Australia and consists of a narrow belt extending from Bega in New South Wales to Rock-Hampton in Queensland (National Research Council 1984). Casuarina glauca is adapted to high soil moisture and salt concentrations. It is suitable for estuarine bank protection, sand dune revegetation, farm windbreaks, and hillside stabilization plantings. One of the greatest uses of Casuarina is the production of firewood for the tropics. In comparison to other fuelwood crop species, Casuarina ranks well for calorific value in relation to wood volume (about 5000kcal/kg).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker DD, Mullin BC (1992) Actinorhizal symbioses. In: Schwintzer CR, Tjepkema ID (eds) Biological nitrogen fixation. Academic Press, New York, pp 281 – 297

    Google Scholar 

  • Beach KH, Gresshoff PM (1988) Characterization and culture of Agrobacterium rhizogenes-transformed roots of forage legumes. Plant Sci 57: 73 – 81

    Article  CAS  Google Scholar 

  • Benfey PN, Chua N-H (1990) The cauliflower mosaic virus 35S promoter: combinational regulation of transcription in plants. Science 250: 959 – 966

    Article  CAS  PubMed  Google Scholar 

  • Bouchez D, Tourneur J (1991) Organisation of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27 – 39

    Article  CAS  PubMed  Google Scholar 

  • Bousquet J, Simon L, Lalonde M (1989) DNA amplification from vegetative and sexual tissues of trees using polymerase chain reaction. Can J Fores Res 20: 254 – 257

    Article  Google Scholar 

  • Christou P (1992) Genetic transformation of crop plants using microprojectile bombardment. Plant J 2: 275 – 281

    Article  CAS  Google Scholar 

  • Diem HG, Dommergues YD (1990) Current and potential uses and management of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankiaand actinorhizal plants. Academic Press, New York, pp 317 – 342

    Google Scholar 

  • Diem HG, Gauthier D, Dommergues Y (1983) Isolation of Frankiafrom nodules of Casuarina equisetifolia. Can J Bot 28: 526 – 530

    Google Scholar 

  • Diouf D, Gherbi H, Prin Y, Franche C, Duhoux E, Bogusz D (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microb Interact 8: 532 – 537

    Article  CAS  Google Scholar 

  • Duhoux E, Franche C, Bogusz D, Diouf D, Le VQ, Gherbi H, Sougoufara B, Le Roux C, Dommergues Y (1996) Casuarinaand Allocasuarma. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 35. trees V. Springer, Berlin Heidelberg New York, pp 76 – 94

    Google Scholar 

  • Franche C, Bogusz D, Schöpke C, Fauquet C, Beachy RN (1991) Transient gene expression in Cassavausing high velocity microprojectiles. Plant Mol Biol 17: 493 – 498

    Article  CAS  PubMed  Google Scholar 

  • Franche C, Bogusz D, Le QV, Phelep M, Duhoux E (1994) Genetic transformation of trees in the Casuarinaceae family. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 29. Plant Protoplasts and Genetic Engineering V. Springer, Berlin Heidelberg New York, pp 257 – 274

    Google Scholar 

  • Franche C, Diouf D, Le QV, N’Diaye A, Gherbi H, Bogusz D, Gobé, C Duhoux E (1997) Genetic transformation of the actinorhizal tree Allocasuarina verde il lataby Agrobacterium turnefaciens. Plant J 11: 897 – 904

    Article  CAS  Google Scholar 

  • Franche C, Laplaze L, Duhoux E, Bogusz D (1998) Actinorhizal symbioses: recent advances in plant molecular and genetic transformation studies. Crit Rev Plant Sci 17: 1 – 28

    Article  CAS  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJ (1991) The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10: 221 – 224

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Jorgensen JE, Stougaard J, Marcker KA (1989) Hairy roots — a short cut to transgenic root nodules. Plant Cell Rep 8: 12 – 15

    Article  CAS  PubMed  Google Scholar 

  • Hardy RWF, Holstein RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43: 1185 – 1207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hooykaas PJ, Beijersbergen AGM (1994) The virulence system of Agrobacterium tumefaciens. Annu Rev Phytopathol 32: 157 – 179

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901 – 3907

    CAS  PubMed  Google Scholar 

  • Jouanin L, Tourneur J, Casse-Delbart F (1986) Restriction maps and homologies of three plasmids of Agrobacterium rhizogenesstrain A4. Plasmid 6: 124 – 134

    Article  Google Scholar 

  • Kay R, Chan A, Daly M, Mc Pherson J (1987) Duplication of CaMV 35S promoter sequence created a strong enhancer for plant genes. Science 236: 1299 – 1302

    Article  CAS  PubMed  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70 – 73

    Article  CAS  Google Scholar 

  • Le QV, Bogusz D, Gherbi H, Lappartient A, Duhoux E, Franche C (1996) Agrobacterium tumefaciensgene transfer to Casuarina glauca, a tropical nitrogen-fixing tree. Plant Sci 118:57–69

    Article  CAS  Google Scholar 

  • Li L, Rongda Q, de Kochko A, Fauquet C, Beachy RN (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep 12: 250 – 255

    Article  PubMed  Google Scholar 

  • Mackay J, Séguin A, Lalonde M (1988) Genetic transformation of nine in vitro clones of Alnusand Bendaby Agrobacterium tumefaciens. Plant Cell Rep 7: 229 – 232

    Article  CAS  PubMed  Google Scholar 

  • Mazodier P, Cossart P, Giraud E, Gasser F (1985) Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucleic Acids Res 13: 195 – 205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • National Research Council (1984) Casuarinas:nitrogen fixing trees for adverse sites. National Academy Press, Washington DC

    Google Scholar 

  • Nitsch JP, Nitsch C (1965) Néoformation de fleurs in vitro chez une espèce de jours courts: Plumbago indicaL. Ann Physiol 7:251–256

    Google Scholar 

  • Pawlowski K, Bisseling T (1996) Rhizobial and actinorhizal symbioses: what are the shared features? Plant Cell 6: 1899 – 1913

    Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79: 206 – 209

    Article  CAS  Google Scholar 

  • Savka MA, Liu L, Farrand SK, Berg RH, Dawson JO (1992) Induction of hairy roots or pseudoactinorhizae on Alnus glutinosa, A. acuminataand Eleagnus angusiifoliaby Agrobacterium rhizogenes. Acta Oecol 13 (4): 423 – 431

    Google Scholar 

  • Sederoff RR (1995) Forest trees. In: Wang K, Herrera-Estrella A, Van Montagu M (eds) The transformation of plants and soil microorganisms. Cambridge University Press. London, pp 150 – 163

    Chapter  Google Scholar 

  • Séguin A, Lalonde M (1988) Gene transfer by electroporation in Betulaceae protoplasts: Alnus incana. Plant Cell Rep 7: 367 – 370

    PubMed  Google Scholar 

  • Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenesagropine-type plasmid: Identification of open reading frames. J Biol Chem 261: 108 – 121

    CAS  PubMed  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Conner-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediatedplant transformation. Mol Gen Genet 220: 245 – 250

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Franche, C., Bogusz, D., Smouni, A., Diouf, D., Gherbi, H., Duhoux, E. (2000). Genetic Transformation of Casuarina glauca . In: Bajaj, Y.P.S. (eds) Transgenic Trees. Biotechnology in Agriculture and Forestry, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59609-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59609-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64049-0

  • Online ISBN: 978-3-642-59609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics