Skip to main content

Internal Ribosome Entry Site-Mediated Translation in Hepatitis C Virus Replication

  • Chapter
The Hepatitis C Viruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 242))

Abstract

The initiation of protein translation on eukaryotic messenger RNAs predominantly follows the first AUG rule, as described by KOZAK (1989b). This states that the ribosome begins scanning an RNA molecule from its extreme 5’ end until it encounters an AUG codon, at which point translation is initiated. In eukaryotes, mRNA molecules usually carry an m7GpppG cap structure at their 5’ terminus. This 5’ cap-structure strongly enhances translation, as it facilitates binding of translation initiation factors and the 40S ribosome subunit to the mRNA (reviewed by PAIN 1996; SACHS et al. 1997). The scanning process, or 3’ movement of the 40S ribosome subunit along the RNA in search of an AUG codon, is inhibited by very stable RNA structures. Also, AUG codons positioned between the 5’ terminus and the AUG codon initiating a specific coding region reduce the efficiency of translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander L, Lu H-H, Wimmer E (1994) Polioviruses containing Picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc Natl Acad Sci USA 91:1406–1410

    Article  PubMed  CAS  Google Scholar 

  • Ali N, Siddiqui A (1995) Interaction of polypyrimidine tract-binding protein with the 5’ noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol 69:6367–6375

    PubMed  CAS  Google Scholar 

  • Ali N, Siddiqui A (1997) The La antigen binds 5’ ssnoncoding region of the hepatitis C virus RNA in the context of the initiator AUG codon and stimulates internal ribosome entry site-mediated translation. Proc Natl Acad Sci USA 94:2249–2254

    Article  PubMed  CAS  Google Scholar 

  • Becher P, Orlich M, Thiel HJ (1998) Complete genomic sequence of border disease virus, a pestivirus from sheep. J Virol 72:5165–5173

    PubMed  CAS  Google Scholar 

  • Belsham GJ (1992) Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J 11:1105–1110

    PubMed  CAS  Google Scholar 

  • Belsham GJ, Sonenberg, N, Svitkin YV (1995) The role of the La autoantigen in internal initiation. Curr Top Microbiol 203:85–98

    CAS  Google Scholar 

  • Belsham GJ, Sonenberg N (1996) RNA-protein interactions in regulation of Picornavirus RNA translation. Micrbiol. Rev. 60:499–511

    CAS  Google Scholar 

  • Berlioz C, Torrent C, Darlix J-L (1995) An internal ribosomal entry signal in the rat VL30 region of the Harvey murine sarcoma virus leader and its use in dicistronic retroviral vectors. J Virol 69:6400–6407

    PubMed  CAS  Google Scholar 

  • Bernstein J, Sella O, Le S Y, Elroy-Stein O (1997) PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 272:9356–9362

    Article  PubMed  CAS  Google Scholar 

  • Bommer UA, Lutsch G, Stahl J, Bielka H (1991) Eukaryotic initiation factors eIF-2 and eIF-3: interactions, structure and localization in ribosomal initiation complexes. Biochemie 73:1007–1019

    Article  CAS  Google Scholar 

  • Borman A, Howell MT, Patton JG, Jackson RJ (1993) The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J Gen Virol 74:1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Borman AM, Bailly JL, Girard M, Kean KM (1995) Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nucleic Acids Res 23:3656–3663

    Article  PubMed  CAS  Google Scholar 

  • Borman AM, Le Mercier P, Girard M, Kean KM (1997) Comparison of picornaviral IRES-driven internai initiation of translation in cultured cells of different origins. Nucleic Acids Res 25:925–932

    Article  PubMed  CAS  Google Scholar 

  • Borovjagin A, Pestova TV, Shatsky IN (1994) Pyrimidine tract binding protein strongly stimulates in vitro encephalomyocarditis virus RNA translation at the level of preinitiation complex formation. FEBS 351:299–302

    Article  CAS  Google Scholar 

  • Brock KV, Deng R, Riblet SM (1992) Nucleotide sequencing of 5’and 3’termini of bovine viral diarrhea virus by RNA ligation and PCR. J Virol Meth 38:39–46

    Article  CAS  Google Scholar 

  • Brown EA, Zhang H, Ping L, Lemon SM (1992) Secondary structure of the 5’nontranslated regions of hepatitis C virus and pestiviruses genomic RNAs. Nucleic Acids Res 20:5041–5045

    Article  PubMed  CAS  Google Scholar 

  • Bukh J, Purcell RH, Miller RH (1992) Sequence analysis of the 5’noncoding region of hepatitis C virus. Proc Natl Acad Sci USA 89:4942–4946

    Article  PubMed  CAS  Google Scholar 

  • Bukh J, Purcell RH, Miller RH (1994) Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proc Natl Acad Sci USA 91:8239–8243

    Article  PubMed  CAS  Google Scholar 

  • Buratti E, Gerotto M, Pontisso P, Alberti A, Tisminetzky SG, Baralle FE (1997) In vivo translational efficiency of different hepatitis C virus 5’-UTRs. FEBS 411:275–280

    Article  CAS  Google Scholar 

  • Buratti E, Tisminetzky SG, Zotti M, Baralle FE (1998) Functional analysis of the interaction between HCV 5’UTR and putative subunits of eukaryotic translation initiation factor iF3. Nucleic Acids Res 26:3179–3187

    Article  PubMed  CAS  Google Scholar 

  • Collett MS, Larson R, Gold C, Strick D, Anderson DK, Purchio AF (1988) Molecular cloning and nucleotide sequence of the pestivirus bovine viral diarrhea virus. Virology 165:191–199

    Article  CAS  Google Scholar 

  • Collier AJ, Tang S, Elliot RM (1998) Translational efficiencies of the 5’untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol 79:2359–2366

    PubMed  CAS  Google Scholar 

  • Dasso MC, Milburn SC, Hershey JW, Jackson RJ (1990) selection of the 5’-proximal translation initiation site is influenced by mRNA and eIF-2 concentrations. Eur J Biochem 187: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Deng R, Brock KV (1993) 5’and 3’untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res 21:1949–1957

    Article  PubMed  CAS  Google Scholar 

  • Donahue TF, Cigan AM, Pabich EK, Valavicius BC (1988) Mutations at a Zn(II) finger motif in the yeast eIF2B gene alter ribosomal start-site selection during the scanning process. Cell 54:621–632

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld E, Semler BL (1995) Anatomy of the poliovirus internal ribosome entry site. Curr Top Microbiol 203:65–83

    CAS  Google Scholar 

  • Fukushi S, Katayama K, Kurihara C, Ishiyama N, Hoshino FB, Ando T, Oya A (1994) Complete 5’noncoding region is necessary for the efficient internal initiation of hepatitis C virus RNA. Biochem Biophys Res Comm 199:425–432

    Article  PubMed  CAS  Google Scholar 

  • Fukushi S, Kurihara C, Ishiyama N, Hoshino FB, Oya A, Katayama K (1997) The sequence element of the internal ribosome entry site and a 25-kilodalton cellular protein contribute to efficient internal initiation of translation of hepatitis C virus RNA. J Virol 71:1662–1666

    PubMed  CAS  Google Scholar 

  • Gan W, Rhoads RE (1996) Internal initiation of translation directed by the 5’-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J Biol Chem 271:623–626

    Article  PubMed  CAS  Google Scholar 

  • Gan W, Celle ML, Rhoads RE (1998) Functional characterization of the internal ribosome entry site of eIF4G mRNA. J Biol Chem 273:5006–5012

    Article  PubMed  CAS  Google Scholar 

  • Hahm B, Kim YK, Kim JH, Kim TY, Jang SK (1998) HnRNP L interacts with the 3’border of internal ribosomal entry site of hepatitis C virus. J Virol 72:8782–8788

    PubMed  CAS  Google Scholar 

  • Hellen CU, Witherell GW, Schmid M, Shin SH, Pestova TV, Gii A, Wimmer E (1993) A cytoplasmic 57- kDa protein that is required for translation of Picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci USA 90:7642–7646

    Article  PubMed  CAS  Google Scholar 

  • Hellen CU, Wimmer E (1995) Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol 203:31–63

    CAS  Google Scholar 

  • Hellen CUT, Pestova TV, Wimmer E (1994) Effect of mutations downstream of the internal ribosome entry site on initiation of poliovirus protein synthesis. J Virol 68:6312–6322

    PubMed  CAS  Google Scholar 

  • Honda M, Brown EA, Lemon SM (1996a) Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968

    PubMed  CAS  Google Scholar 

  • Honda M, Ping LH, Rijnbrand RCA, Amphlett E, Clarke B, Rowlands D, Lemon SM (1996b) Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222:31–42

    Article  PubMed  CAS  Google Scholar 

  • Honda M, Beard M, Ping L, Lemon SM (1999a) A phylogenetically conserved stem-loop structure at the 5’border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol 73:1165–1174

    PubMed  CAS  Google Scholar 

  • Honda M, Rijnbrand R, Abell G, Kim D, Lemon SM (1999b) Natural variation in translation activities of the 5’nontranslated RNAs of genotypes la and lb hepatitis C virus: Evidence for a long range RNA-RNA interaction outside of the internal ribosomal entry site. J Virol 73:4941–4951

    PubMed  CAS  Google Scholar 

  • Huhn P, Pruijn GJ, van Venrooij WJ, Bachmann M (1997) Characterization of the autoantigen La (SS-B) as a dsRNA unwinding enzyme. Nucleic Acids Res 25:410–416

    Article  PubMed  CAS  Google Scholar 

  • Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P (1995) Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol 203:155–177

    CAS  Google Scholar 

  • Ito T, Tahara SM, Lai MMC (1998) The 3’untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72:8789–8796

    PubMed  CAS  Google Scholar 

  • Jackson RJ, Howell MT, Kaminski A (1990) The novel mechanism of initiation of Picornavirus RNA translation. Trends Biochem Sci 15:477–483

    Article  PubMed  Google Scholar 

  • Jackson RJ, Kaminski A (1995) Internal initiation of translation in eukaryotes: The Picornavirus paradigm and beyond. RNA 1:985–1000

    PubMed  CAS  Google Scholar 

  • Jang SK, Krausslich MJH, Nickiin GM, Duke AC, Palmenberg AC, Wimmer E (1988) A segment of the 5’nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    PubMed  CAS  Google Scholar 

  • Jia XY, Tesar M, Summers DF, Ehrenfeld E (1996) Replication of hepatitis A viruses with chimeric 5’nontranslated regions. J Virol 70:2861–2868

    PubMed  CAS  Google Scholar 

  • Kaminski A, Hunt SL, Patton JG, Jackson RJ (1995) Direct evidence that the polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA 1:924–938

    PubMed  CAS  Google Scholar 

  • Kamoshita N, Tsukiyama-Kohara K, Kohara M, Nomoto A (1997) Genetic analysis of internal ribo- somal entry site on hepatitis C virus RNA: implication for involvement of the high ordered structure and cell type-specific transacting factors. Virology 233:9–18

    Article  PubMed  CAS  Google Scholar 

  • Kettinen HK, Grace K, Grunert S, Klarke B, Rowlands D, Jackson R (1994) Mapping of the internal ribosome entry site at the 5’end of the hepatitis C virus genome. In: Nishioka K, Suzuki H, Mishihiro S, Oda T (eds) Proceedings of the international symposium on viral hepatitis and liver disease. Tokyo, pp 125–131

    Google Scholar 

  • Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM (1997) Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277:570–574

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV (1993) Computer-assisted identification of a putative methyltransferase domain in NS5 protein of fiaviviruses and lambda 2 protein of reovirus. J Gen Virol 74:733–740

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1977) Nucleotide sequences of 5’-terminal ribosome-protected initiation regions from two reovirus messages. Nature 269:391–394

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989a) Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol Cell Biol 9:5073–5080

    PubMed  CAS  Google Scholar 

  • Kozak M (1989b) The scanning model for translation: An update. J Cell Biol 108:229–241

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1989c) Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotics m RNA. Mol Cell Biol 9:5134–5142

    PubMed  CAS  Google Scholar 

  • La Monica N, Racaniello VR (1989) Differences in replication of attenuated and neuro virulent polio-viruses in human neuroblastome cell line SH-SY5Y. J Virol 63:2357–2360

    PubMed  Google Scholar 

  • Le S Y, Chen JH, Sonenberg N, Maizel JV (1992) Conserved tertiary structure elements in the 5’untranslated region of human enteroviruses and rhinoviruses. Virology 191:858–866

    Article  PubMed  CAS  Google Scholar 

  • Le S Y, Chen JH, Sonenberg N, Maizel JV, Jr. (1993) Conserved tertiary structural elements in the 5’nontranslated region of cardiovirus, aphthovirus and hepatitis A virus RNAs. Nucleic Acids Res 21:2445–2451

    Article  PubMed  CAS  Google Scholar 

  • Le S Y, Chen JH, Sonenberg N, Maizel JV, Jr. (1994) Distinct structural elements and internal entry of ribosomes in mRNA3 encoded by infectious bronchitis virus. Virology 198:405–411

    Article  PubMed  CAS  Google Scholar 

  • Le SY, Chen JH, Sonenberg N, Maizel JV, Jr. (1995) Unusual folding regions and ribosome landing pad within hepatitis C virus and pestivirus RNAs. Gene 154:137–143

    Article  PubMed  CAS  Google Scholar 

  • Lee YF, Nomoto A, Detjen BM, Wimmer E (1977) A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci USA 74:59–63

    Article  PubMed  CAS  Google Scholar 

  • Lemon SM, Honda M (1997) Internal ribosome entry sites within the RNA genomes of hepatitis C virus and other Fiaviviruses. Seminars in Virology 8:274–288

    Article  CAS  Google Scholar 

  • Lerat H, Berby F, Trabaud MA, Vidalin O, Major M, Trepo C, Inchauspe G (1996) Specific detection of hepatitis C virus minus strand RNA in hematopoietic cells. J Clin Invest 97:845–851

    Article  PubMed  CAS  Google Scholar 

  • Liu DX, Inglis SC (1992) Internal entry of ribosomes on a tricistronic mRNA encoded by infectious bronchitis virus. J Virol 66:6143–6154

    PubMed  CAS  Google Scholar 

  • Lu H-H, Wimmer E (1996) Poliovirus chimeras replicating under the translational control of genetic elements of hepatitis C virus reveal unusual properties of the internal ribosomal entry site of hepatitis C virus. Proc Natl Acad Sci USA 93:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5’leader of a cellular mRNA. Nature 353:90–94

    Article  PubMed  CAS  Google Scholar 

  • Maga JA, Widmer G, LeBowitz JH (1995) Leishmania RNA virus 1-mediated cap-independent translation. Mol Cell Biol 15:4884–4889

    PubMed  CAS  Google Scholar 

  • McBratney S, Sarnow P (1996) Evidence for involvement of trans-acting factors in selection of the AUG start codon during eukaryotic translational initiation. Mol Cell Biol 16:3523–3534

    PubMed  CAS  Google Scholar 

  • Meerovitch K, Svitkin YV, Lee HS, Lejbkowicz F, Kenan DJ, Chan EK, Agol VI, Keene JD, Sonenberg N (1993) La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J Virol 67:3798–3807

    PubMed  CAS  Google Scholar 

  • Meyers G, Thiel HJ, Rumenapf T (1996) Classical swine fever virus: recovery of infectious viruses from cDNA constructs and generation of recombinant cytopathogenic defective interfering particles. J Virol 70:1588–1595

    PubMed  CAS  Google Scholar 

  • Molla A, Jang SK, Paul AV, Reuer Q, Wimmer E (1992) Cardioviral internal ribosomal entry site is functional in a genetically engineered dicistronic poliovirus. Nature 356:255–257

    Article  PubMed  CAS  Google Scholar 

  • Muerhoff AS, Leary TP, Simons JN, Pilot-Matias TJ, Dawson GJ, Erker JC, Chalmers ML, Schlauder GG, Desai SM, Mushahwar IK (1995) Genomic organisation of GB viruses A and B: two new members of the Flaviviridae associated with GB agent hepatitis. J Virol 69:5621–5630

    PubMed  CAS  Google Scholar 

  • Nakajima N, Hijikata M, Yoshikura H, Shimizu YK (1996) Characterization of long-term cultures of hepatitis C virus. J Virol 70:3325–3329

    PubMed  CAS  Google Scholar 

  • Nanbru C, Lafon I, Audigier S, Gensac MC, Vagner S, Huez G, Prats AC (1997) Alternative translation of the proto-oncogene c-myc by an internal ribosome entry site. J Biol Chem 272:32061–32066

    Article  PubMed  CAS  Google Scholar 

  • Oh SK, Scott MP, Sarnow P (1992) Homeotic gene Antennapedia mRNA contains 5’-noncoding sequences that confer translational initiation by internal ribosome binding. Genes Dev 6:1643–1653

    Article  PubMed  CAS  Google Scholar 

  • Ohba K, Mizokami M, Lau JY, Orito E, Ikeo K, Gojobori T (1996) Evolutionary relationship of hepatitis C, pesti-, flavi, plantviruses, and newly discovered GB hepatitis agents. FEBS 378:232–234

    Article  CAS  Google Scholar 

  • Pain VM (1996) Initiation of protein synthesis in eukaryotic cells. Eur J Biochem 236:747–771

    Article  PubMed  CAS  Google Scholar 

  • Park YW, Katze MG (1995) Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. J Biol Chem 270:28433–28439

    CAS  Google Scholar 

  • Peabody DS (1987) Translation initiation at an ACG triplet in mammalian cells. J Biol Chem 262: 11847–11851

    PubMed  CAS  Google Scholar 

  • Peek R, Pruijn GJ, van Venrooij WJ (1996) Interaction of the La (SS-B) autoantigen with small ribosomal subunits. Eur J Biochem 236:649–655

    Article  PubMed  CAS  Google Scholar 

  • Pelletier J, Kaplan G, Racaniello V, Sonenberg N (1988) Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5’noncoding region. Mol Cell Biol 8:1103–1112

    PubMed  CAS  Google Scholar 

  • Pestova TV, Hellen CU, Shatsky IN (1996) Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16:6859–6869

    PubMed  CAS  Google Scholar 

  • Pestova TV, Shatsky IN, Fletcher SP, Jackson RJ, Hellen CUT (1998) A prokaryotic-like mode of cytoplasmatic eukaryotic ribosome binding to the initiation codon during internal translation of hepatitis C virus and classical swine fever virus RNAs. Genes Dev 12:67–83

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Gmyl AP, Maslova SV, Svitkin YV, Sinyakov AN, Agol VI (1992) Prokaryotic-like cis elements in the cap-independent internal initiation of translation on Picornavirus RNA. Cell 68: 119–131

    Article  PubMed  CAS  Google Scholar 

  • Pilipenko EV, Gmyl AP, Maslova SV, Belov GA, Sinyakov AN, Huang M, Brown TDK, Agol VI (1994) Starting window, a distinct element in the cap-independent internal initiation of translation of pi- cornaviral RNA. J Mol Biol 241:398–14

    Article  PubMed  CAS  Google Scholar 

  • Poole TL, Wang C, Popp RA, Potgieter LND, Siddiqui A, Collet MS (1995) pestivirus translation initiation occurs by internal ribosome entry. Virology 206:750–754

    Article  PubMed  CAS  Google Scholar 

  • Prats AC, Vagner S, Prats H, Amalric F (1992) cis-acting elements involved in the alternative translation initiation process of human basic fibroblast growth factor mRNA. Mol Cell Biol 12:4796–4805

    PubMed  CAS  Google Scholar 

  • Reynolds JE, Kaminski A, Kettinen HJ, Grace K, Clarke BE, Carroll AR, Rowlands DJ, Jackson RJ (1995) Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14: 6010–6020

    PubMed  CAS  Google Scholar 

  • Reynolds JE, Kaminski A, Carroll AR, Clarke BE, Rowlands DJ, Jackson RJ (1996) Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA 2:867–878

    PubMed  CAS  Google Scholar 

  • Rice MC (1997) The Flaviviridae (931–959) In: Fields BN, Knipe DM, Howley PM (eds) Virology. Lippincott-Raven, Philadelphia, p 3.

    Google Scholar 

  • Ridpath, JF, Bolin SR (1995) The genomic sequence of a virulent bovine viral diarrhea virus (BVDV) from the type 2 genotype: detection of a large genomic insertion in a noncytopathic BVDV. Virology 212:39–46

    Article  PubMed  CAS  Google Scholar 

  • Rijnbrand R, Bredenbeek P, van der Straaten T, Whetter L, Inchauspe G, Lemon S, Spaan W (1995) Almost the entire 5’non-translated region of hepatitis C virus is required for cap-independent translation. FEBS 365:115–119

    Article  CAS  Google Scholar 

  • Rijnbrand R, van der Straaten T, van Rijn P, Spaan WJM, Bredenbeek PJ (1997) Internal entry of ribosomes is directed by the 5’noncoding region of classical swine fever virus and is dependent on the presence of an RNA pseudoknot upstream of the initiation codon. J Virol 71:451–457

    PubMed  CAS  Google Scholar 

  • Rijnbrand RCA, Abbink TEM, Haasnoot PC, Spaan WJM, Bredenbeek PJ (1996) The influence of AUG codons in the hepatitis C virus 5’nontranslated region on translation and mapping of the translation initiation window. Virology 226:47–56

    Article  PubMed  CAS  Google Scholar 

  • Rohll JB, Percy N, Ley R, Evans DJ, Almond JW, Barclay WS (1994) The 5’-untranslated regions of Picornavirus RNAs contain independent functional domains essential for RNA replication and translation. J Virol 68:4384–4391

    PubMed  CAS  Google Scholar 

  • Sachs AB, Sarnow P, Hentze MW (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89:831–838

    Article  PubMed  CAS  Google Scholar 

  • Schultz DE, Honda M, Whetter L, McKnight KL, Lemon SM (1996) Mutations within the 5’non- translated RNA of cell culture-adapted hepatitis A virus which enhance cap-independent translation in cultured African green monkey kidney cells. J Virol 70:1041–1049

    PubMed  CAS  Google Scholar 

  • Shimizu YK, Igarashi H, Kanematu T, Fujiwara K, Wong DC, Purcell RH, Yoshikura H (1997) Sequence analysis of the hepatitis C virus genome recovered from serum, liver, and peripheral blood mononuclear cells of infected chimpanzees. J Virol 5769–5773.

    Google Scholar 

  • Shiroki K, Ishii T, Aoki T, Ota Y, Wang WX, Komatsu T, Ami Y, Arita M, Abe S, Hashizume S, Nomoto A (1997) Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J Virol 71:1–8

    PubMed  CAS  Google Scholar 

  • Simons JN, Desai SM, Schultz DE, Lemon SM, Mushawar IK (1996) Translation initiation in GB viruses A and C: evidence for internal ribosome entry and implications for genome organisation. J Virol 70:6126–6135

    PubMed  CAS  Google Scholar 

  • Sizova DV, Kolupaeva VG, Pestova TV, Shatsky IN, Hellen CUT (1998) Specific interaction of eu- karyotic translation initiation factor 3 with the 5’nontranslated regions of hepatitis C virus and classical swine fever virus RNAs. J Virol 72:4775–4782

    PubMed  CAS  Google Scholar 

  • Smith DB, Mellor J, Jarvis LM, Davidson F, Kolberg J, Urdea MS, Yap PL, Simmonds P (1995) Variations of the hepatitis C virus 5’non-coding region: implications for the secondary structure, virus detection and typing The international HCV collaborative study group. J Gen Virol 76: 1749–1761

    Article  PubMed  CAS  Google Scholar 

  • Smith DB, Simmonds P (1997) Characteristics of nucleotide substitution in the hepatitis C virus genome: constraints on sequence change in coding regions at both ends of the genome. J Mol Evol 45:238–246

    Article  PubMed  CAS  Google Scholar 

  • Stewart SR, Semler BL (1997) RNA determinants of Picornavirus cap-independent translation initiation. Seminars in Virology 8:242–255

    Article  CAS  Google Scholar 

  • Stoneley M, Paulin FE, Le Quesne JP, Chappell SA (1998) C-Myc 5’untranslated region contains an internal ribosome entry segment. Oncogene 16:423–428

    Article  PubMed  CAS  Google Scholar 

  • Svitkin YV, Pause A, Sonenberg N (1994) La autoantigen alleviates translational repression by the 5’leader sequence of the human immunodeficiency virus type 1 mRNA. J Virol 68:7001–7007

    PubMed  CAS  Google Scholar 

  • Teerink H, Voorma HO, Thomas AA (1995) The human insulin-like growth factor II leader 1 contains an internal ribosomal entry site. Biochem Biophys Acta 1264:403–408

    PubMed  Google Scholar 

  • Thiel V, Siddell SG (1994) Internal ribosome entry in the coding region of murine hepatitis virus mRNA 5. J Gen Virol 75:3041–3046

    Article  PubMed  CAS  Google Scholar 

  • Thomas AA, ter Haar E, Wellink J, Voorma HO (1991) Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation. J Virol 65:2953–2959

    PubMed  CAS  Google Scholar 

  • Thomas A A, Rijnbrand R, Voorma HO (1996) Recognition of the initiation codon for protein synthesis in foot-and-mouth disease virus RNA. J Gen Virol 77:265–272

    Article  PubMed  CAS  Google Scholar 

  • Tolan DR, Hershey JW, Traut RT (1983) Crosslinking of eukaryotic initiation factor eIF3 to the 40S ribosomal subunit from rabbit reticulocytes. Biochimie 65:427–436

    Article  PubMed  CAS  Google Scholar 

  • Tsukiyama-Kohara K, Iizuka N, Kohara M, Nomoto A (1992) Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483

    PubMed  CAS  Google Scholar 

  • Vagner S, Waysbort A, Marenda M, Gensac MC, Amalric F, Prats AC (1995a) Alternative translation initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving the p57/PTB splicing factor. J Biol Chem 270:20376–20383

    Article  PubMed  CAS  Google Scholar 

  • Vagner S, Gensac MC, Maret A, Bayard F, Amalric F, Prats H, Prats AC (1995b) Alternative translation of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. Mol Cell Biol 15:35–44

    PubMed  CAS  Google Scholar 

  • Verver J, Le Gall O, van Kammen A, Wellink J (1991) The sequence between nucleotides 161 and 512 of cowpea mosaic virus M RNA is able to support internal initiation of translation in vitro. J Gen Virol 72:2339–2345

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Sarnow P, Siddiqui A (1993) Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome binding mechanism. J Virol 67:3338–3344

    PubMed  CAS  Google Scholar 

  • Wang C, Sarnow P, Siddiqui A (1994) A conserved helical element is essential for internal initiation of translation of hepatitis C virus RNA. J Virol 68:7301–7307

    PubMed  CAS  Google Scholar 

  • Wang C, Le S-Y, Ali N, Siddiqui A (1995) An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5’noncoding region. RNA 1:526–537

    PubMed  CAS  Google Scholar 

  • Wimmer E, Hellen CU, Cao X (1993) Genetics of poliovirus. Annu Rev Genet 27:353–436

    Article  PubMed  CAS  Google Scholar 

  • Yanagi M, Purcell RH, Emerson SU, Bukh J (1997) Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci USA 94:8738–8743

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Fong P, Iizuka N, Choate D, Cavener DR (1997) Ultrabithorax and Antennapedia 5’untranslated regions promote developmentally regulated internal translation initiation. Mol Cell Biol 17: 1714–1721

    PubMed  CAS  Google Scholar 

  • Yen JH, Cahng SC, Hu CR, Chu SC, Lin SS, Hsieh YS, Chang MF (1995) Cellular proteins specifically bind to the 5’noncoding region of hepatitis C virus RNA. Virology 208:723–732

    Article  PubMed  CAS  Google Scholar 

  • Yoo BJ, Spaete RR, Geballe AP, Selby M, Houghton M, Han JH (1992) 5’end dependent translation initiation of hepatitis C viral RNA and the presence of putative positive and negative translational control elements within the 5’untranslated region. Virology 191:889–899

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rijnbrand, R.C.A., Lemon, S.M. (2000). Internal Ribosome Entry Site-Mediated Translation in Hepatitis C Virus Replication. In: Hagedorn, C.H., Rice, C.M. (eds) The Hepatitis C Viruses. Current Topics in Microbiology and Immunology, vol 242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59605-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59605-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64047-6

  • Online ISBN: 978-3-642-59605-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics